1. Introduction

The ocean covers approximately 71% of the earthaseirand it significantly
influences the global and regional climates andwileather and monsoon systems. Climate
variability and its socio-economic impact clearljnghasizes the need to understand the
system to enable better forecasts. Unlike land, revhthe operational networks of
meteorological observations placed all over theldvbave enabled us to monitor changes in
the global atmosphere, the global coverage of theswgface observations in the ocean is
largely under sampled. With the advent of Argo amdored buoy programs, there was a
considerable increase in the amount of oceanicdlaiag the last decade. However, the data
is still inadequate to understand the dynamicsthrdmodynamics of the ocean on different
spatial and temporal scale. Besides under-sampliwgadditional limitations of the historical
observational data set complicate the studies eam@hysics variability on inter-annual to
decadal time scales. The first is due to changehanobservation bias resulting from the
evolution of the observing system. The second #tiah is due to changes in the vertical
sampling of the historical temperature data dearfon and Santorelli,2008]. These
limitations demand the importance of ocean modglli®@cean modelling can provide a
unique opportunity to understand the past and iegistlimatic conditions and to predict
future climate changes. Hence a number of effatetbeen initiated in recent years to apply
data assimilation techniques to produce reanablaia using a state of the art ocean general
circulation model (OGCM). These data can be usedniberstand the physical state of the
ocean (temperature, salinity, currents, sea lereg§easonal to decadal time scales.

At present several operational agencies aroundtkel provide seasonal forecasting,
which requires near-real-time knowledge of the ac&tate. Seasonal forecasting systems are
based on coupled ocean-atmosphere general cicnulatiodels that predict sea surface
temperature (SST) and their impact on atmosphdrulation. Ultimately, the aim of

seasonal forecasts is to predict climate anomalEsit one or two seasons in advance. A



model that can skilfully predict future climate ntlos and seasons ahead is a powerful tool to
assist in planning and managing almost all socamemic activities.

India is a country where the economy largely depeod agricultural production,
which, in tern, is strongly dependent on the rdintceived over the Indian land mass during
the summer monsoon months of June-Septenttsgegvan et al2008]. It is well known that
the Indian summer monsoon rainfall shows largeriateual variability both in terms of
spatial distribution and intensity. A better forstaf the monsoon will aid the government in
taking precautionary measures to tackle issuesdiéfeits in food production, damage due to
floods, etc. Therefore, the prediction of the iaterual and seasonal variation of the Indian
summer monsoon rainfall, particularly for the oceunce of extreme events like droughts and
excessive rainfall is extremely important. Howeviee skill of atmospheric and coupled
models to predict the summer monsoon rainfall isyeb satisfactory@adgil and Srinivasan,
2011]. For example, almost all the model generatedictions by the leading centers in the
world using general circulation models of the atpiese or of the coupled ocean-atmosphere
system did not anticipate the large deficit in falinduring the summer monsoon of 2009
[Nanjundiah, 2009]. It is well known that the ocean SST playsignificant role in the
modulation of the summer monsoon rainf&hgnoi et al.2002 Vecchi and Harison2002
Joseph et al.2005 Shankar et al.200% Francis and Gadgil,2009] In addition, earlier
modelling studies also have highlighted the sigaifice of better oceanic initial conditions,
particularly with regard to the upper ocean thermstalicture, for improving the skill of
climate model forecasts at the seasonal time §8abnaseda et al.2009; Balmaseda and
Anderson2009]. Any inaccuracy in the upper ocean thernraksire, particularly in the SST
strongly influences the atmospheric circulatiothia coupled modeBalmaseda et al2009].

In addition Balmaseda and Andersa2)09] showed that ocean initialization has a sigaift
impact on the mean state, variability, and skilcotipled forecasts at the seasonal time scale.

It is well known that, model forcing fields (surtadlux products and wind products) have



significant errors. These will inevitably lead toraes in the ocean model output. Data
assimilation techniques are then used to improwe dbean state estimations. Hence the
assimilation of ocean surface and subsurface débaai ocean general circulation model can
improve the initial estimation of the ocean stathjch in principle should improve the skill
of seasonal forecasts.

To increase the understanding and predictive chpabf the oceans role in future
climate change scenarios, a new version of the &l@rean Data Assimilation System
(GODAS) has been developed at the National Cefeerisnvironmental Prediction (NCEP).
This new system is part of the new Climate Fore&stem Reanalysis (CFSR) at NCEP
[Saha et al.2010]. The GODAS has been configured at the mdtliational Centre for Ocean
Information Services (INCOIS) and two experimenasdnbeen performed. The details of the
experiments will be discussed in section 3.

One of the important stages in building any hindéa®cast system is to evaluate the
model simulated parameters with independertgitu and satellite observations. The ultimate
goal of validation of the model output is to detarento what extent the model is an accurate
representation of the real system being modellée. ifisights gained from model validation
will be useful for the improvements of the modedisility to capture realistic scenarios and
for establishing the limitations of a model.

Though the ocean parameters derived from the GODI®BA3 were validated for the
IO by Huang et al.[2008] for the period 2001-2006, the newly develd@sODAS based on
MOM4p0 has not been validated, especially for théidn Ocean (I0O) region. This report
aims to validate the GODAS simulations for the IQridg the period of 2004-2009. The
report is organised as follows: Section 2 descrthesmodel configuration and assimilation
scheme. Section 3 describes the model forcingdialad the experiments carried out with
different wind products, NCEP2 and QuikSCAT. Sattbdescribes the data sets used and

the methodology employed for the validation. Setth describes the validation results for



different parameters obtained from the GODAS-MOMdelooutput. Section 6 describes the
dissemination procedure to get the ocean analysdupts from the web GIS and LAS server.

A summary of this report and future plans and reoemdations are given in section?.

2. Model configuration, forcing field and assimilaton system
2.1 The Ocean Model

The model which has been configured at INCOIS ésrbw version of the GODAS,
which is based on the GFDL MOM4p0 with a 3DVAR datssimilation scheme. The
MOM4p0 is fully global with an Arctic Ocean and enteractive ice model. ThRIOM4pO0 is
a hydrostatic, primitive equation, free surfaceunesq OGCM with z-coordinates in the
vertical and generalized orthogonal horizontal dowtes. The model uses the tripolar grid
developed burray [1996]. Northward of 65°N it uses a rotated bipagad that places two
poles over land which eliminates the singularitythe northern ocean. Southward of 65°S it
uses a regular latitude and longitude grid. Thenitive equations are discretized on an
Arakawa B-grid. The model domain is shown in Fig@ré. The model has a uniform zonal
resolution of 0.5°S and a variable meridional regsoh of 0.25° within 10° of the equator,
which decreases exponentially from 10°S (10°N)Q®S3(30°N) to maintain a 0.5 meridional
resolution polewards from 30°S (30°N). There ardad@rs in the vertical with 27 layers in
the upper 400 m, and the maximum bottom depth poaxmmately 4.5 km. The vertical
resolution is 10 m from the surface to the 240 mptll@nd gradually increases to about 511 m
in the bottom layer. The bathymetry is based onrsayeed version of the topography data by
Andrew Coward and David Webb at the Southamptora@agraphy CentreQriffies et al,
2004]. Their topography is a montage of that dgwetbbySmith and Sandwe]l997] using
satellite data in the region of 72°S to 72°N, NM@AA [1988] 5-minute global topography

ETOPOS (Figure 2.1), and the International Bathyimé€@hart of the Arctic Ocean (IBCAO).



Vertical mixing follows the nonlocal K-profile pareeterization of_arge et al.[1994].
The horizontal mixing of tracers uses the isonéutn@thod developed byGent and
McWilliams[1990] (see als@riffies et al.[1998]). The horizontal mixing of momentum uses
the nonlinear scheme @&magorinsky[1963] (see alsdsriffies and Halberg,[2000]). The

baroclinic and barotropic time step of the moddl860 s and 22.5 s respectively.
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Figure 2.1. The schematic diagram of model domamd apatial grid resolution. The
resolution of the grid is reduced by 4X for displ@je resolution is 1/2° X 1/2° increasing to

1/2° X 1/4° within 10° of the equator. The gridlistorted in the Arctic.

2.2 Assimilation system

The GODAS uses a 3DVAR assimilation scheme, whies ariginally developed by
Derber and Rosati[1989]. It was adopted for operational use at NCHEMRere it has
undergone further development to assimilate sglpibfiles Behringer et al. 1998 Huang
et al, 2008]. The functional to be minimized is

=5 )+ om)- I Fom- 1) )

where the vector T represents the correction tofitse-guess prognostic tracers

(temperature and salinity) computed by the modes, the first-guess error covariance matrix,



To represents the difference between the tracer wisens and the first guesB is an
interpolation operator that transforms the firsegs tracers from the model grid to the
observation locations, arfélis the observation error covariance matrix for titaeers. In the
present system, the first-guess error covariance&ixna, is univariate and thus block
diagonal with respect to temperature and salidibe horizontal covariance is modelled as a
Gaussian function that is stretched in the zonadction with the stretching being greatest
near the equator. The vertical covariance is aledatied as a Gaussian function with a scale
that increases with depth as the model grid saparaicreases; near the surface, the scale is
approximately 25 m. The estimated first-guess evasirance is scaled by the square root of
the local vertical temperature gradient computemmfra previous model analysis. In the
present study, the current 5 day analysis providesiata for estimating the first-guess error
variance for the next 5 day analysis. The obseymatierrors are assumed to be uncorrelated,
so thatF is a diagonal matrix of the estimated error vareenof the observations

The errors assigned to a temperature profile vatly depth according to the square
root of the vertical temperature gradient and aedesl to have values betwe€iCland 2.5C.
The standard error assigned to a salinity profdeai constant 0.1 psu at all depths.
Temperature and salinity profiles are assimilate@-aour intervals using all observations
from the previous 10-day interval. The more distantrofile is in time, the less weight it
receives in the assimilation. This approach alloslatively sparse ocean observations to have
a greater impact on the model stddefber and Rosati1989;Behringer et al. 1998]. Upper
750 m depth (30 levels) temperature and salinitgfiles from different in-situ ocean
observational network (Research Moored Array foridsin-Asian-Australian Monsoon
Analysis and predication (RAMA), TAO/TRITION, PIRA moored buoys, XBTs, and
ARGO) are being assimilated for the present stutdlys worth mentioning here that, the

number of temperature and salinity profiles assitad in the model vary with time.
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Figure 2.2. The yearly distribution of temperatprefiles available in the 10 for assimilation
during the period 2004-2009. Total (ARGO+XBT+budglft), ARGO (middle) and buoy
(right). The total number of profiles available the 10 for assimilation is given in each

panel. The colour bar indicates the number of pesfin 0.5° X 0.5° grid box.

GODAS salinity is not restored to climatology inetlsense of Salinity(z), z is
depth. Instead it assimilates synthetic salindgdd on the local climatological temperature
and salinity correlation and the observed Tempes&) So, for each Temperature(z)
observation there is a corresponding Salinity(F(¥emperature(z)), where F represents the

local correlation. The objective is to conservetervanass properties. The Quality Control



(QC) code which preprocesses the input data foGO®AS generates the synthetic salinity
profiles, taking observed temperature profile gatnFor the top level of the model (5 m), the
temperature analysis is strongly relaxed usingydaptimally interpolated (Ol) SST analysis
[Reynolds et al.2007]. The purpose of using relaxation at the seria to provide a strong
constraint on the ocean at the interface with ttneoaphere, and compensate for possible
model drift due to errors in the surface heat aodientum fluxes.

Figure 2.2 shows the yearly distribution of tempam profiles available in the 10 for
assimilation during the period 2004-2009. The [@hel shows the observation frequency
distribution for total temperature profiles acqdifgom XBT, Argo and buoys. The middle
and right panels show the observation frequendyiloligions for Argo and buoy temperature

profiles assimilated into the model respectively.
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Figure 2.3. Monthly evolution of number of tempearatprofiles avilable for assimaltion in
the 10 during 2003-20089.

Figure 2.3 shows the monthly evolution of humbketemperature profiles available
in the 10 during 2003-2009. It can be seen fromRigeire 2.2 and 2.3 that in 2004 the sparse
observations which went into the assimilation systeas improved as time passes and
reasonably good coverage is achieved in 2007. D& nhumber of observations has

increased almost two fold in 2009 as compareddbith2004 (Figure 2.3)



3. Experiments Performed
3.1 NCEP Experiment

In the first experiment the GODAS-MOM is forced wNICEP2 heat, momentum and
freshwater fluxesjanamitsu et al.2002]. This experiment performed for 2003-2009 gsin
ocean initial condition provided by NCEP, is dembés the NCEP experiment (NCEPEXP).
The NCEP2 precipitation and annual mean value oEBENO River runoff Yérosmarty et
al., 1996] has been used for freshwater forcing. Therriunoff is distributed over several
grid points at the surface. The river run-off mixischeme uses thgper 40 m of the water
column as the river incursion thickness. The clgbgdl concentration is used from monthly
SeaWiFS climatology. The turbulent fluxes of selesdnd latent heat, were calculated in the
model using the COARE-bulk algorithrirdirall et al., 2003] with the NCEP2 wind speed,
specific humidity and air temperature, and models@face temperature.
3.2 Quikscat EXP

The wind simulated by numerical weather predictiodels has a relatively coarse
resolution (~1.5 or 2°) and hence it can capturg tarhe scale features of the wind field over
the world ocean, missing small scale featur€helJton et al.,2004]. High-resolution
measurements by the QuikSCAT scatterometer reveet aiversity of persistent small-scale
features in the global wind stress field that carb@detected by other meai@hplton et al.,
2004]. In addition, earlier studies have shown th&h resolution wind fields can
significantly improve ocean general circulation rebcesults, particularly with regard to the
simulation of subsurface features, coastal currentscoastal upwelling process&ohg and
Oey, 2005 Jiang et al.,2008]. In addition, earlier studies highlighted ihgortance of an
accurate representation of the subsurface temperatunumerical models for better SST
prediction Kang and Kug2000].

Goswami and Sengupf2003] have shown that the NCEP1 reanalysis serfeiads

are underestimated in the equatorial 10. Subsetyju&utain et al[2009] have shown that



NCEP2 winds also underestimated in the south Ha#lesbian SeaAgarwal et al.[2008]
assessede quality of the wind speed products from QuikSCa#&ild NCEP in the 10 using
the National Institute of Ocean Technology (NIOTpl winds for comparison. Their study
shows that compared to NCEP2, the QuikSCAT windaswvstelatively less error and larger
correlations with buoy measured windsharma et al[2007] showed improvements in model
current and salinity structures in the equator@@| Wwhen the model was forced by QuikScat
winds instead of NCEP winds. Another important deatof satellite winds are their relatively
high spatial resolution compared to the reanalyssiuct.Agarwal et al.[2008] evaluated the
relative performance of QuUikSCAT and NCEP re-analygnds through simulations by an
ocean general circulation model (MOM3) for the Kyion. Their study showed considerable
improvements in model simulations when they areddmwith QuikSCAT winds compared to
NCEP winds. Considering, these results we desigmedmore experiment replacing NCEP
winds with QuikSCAT winds for the same period (2ZI®9), denoted as the QuikSCAT
experiment (QSCATEXP).

This report presents the validation of the SST, s@éace height anomaly (SSHA),
current, salinity, depth of 20°C isotherm (D20),xll Layer Depth (MLD), and Isothermal

Layer Depth (ILD) from the two GODAS-MOM experimenNCEPEXP and QSCATEXP.

4. Data set used for validation and methods

To validate model outputs the following observasibproducts are used. Microwave
based merged SST products from the Tropical Raikfahsuring Mission (TRMM) onboard
the TRMM Microwave Imager (TMI) and Aqua aboard #hévanced Microwave Scanning
Radiometer (AMSR-E) Ol SST product (TMIAMSRE) isedsto validate the model near
surface temperature. Merged altimeter gridded SSidfa AVISO, 2009] was utilized to
validate the model derived SSHA. The model deri8&HA was estimated as the difference

between model sea surface height and its annuat (2684-2009). All the data sets, which



were used for model validation, were interpolatedhte horizontal and vertical grids of the
model.

The depth of the 20°C isotherm is used as a meadguitee ability of the model to
capture the thermocline variabilityY@i, 2003]. Although, in principle, the depth of
thermocline is the depth of the maximum verticahperature gradient, it is often specified in
terms of the depth of a representative isothermedtuices the three-dimensional variability
into a two-dimensional field, which can be mappad studied convenientlKessler,1990].
The ILD is defined as the depth where the tempezati0.8°C less than SSK4dra et al.,
2000a). The MLD is calculated as the depth wheere dénsity is equal to the sea surface
density plus the increment in density by 0.125 kg [fduang and Russell994 Kara,
2000b]

The temperature and salinity climatology obtaineanf World Ocean Atlas (WOAQ9)
Locarnini et al.[2010] were used to validate the mean monthly @ah of the model
derived sea surface salinity, D20, MLD, and ILD.eTweekly gridded objective analysis
fields of  temperature and salinity data  (2004-2007)rom Ifremer
(http://projets.ifremer.fr/coriolis) were used taaenine the model’'s ability to capture the
intraseasonal and interannual variability of D20L.DJ and ILD. During 2008-2009, the
temperature and salinity measured by RAMA budvisghaden et al.2009] were used to
validate the daily MLD and ILD from model output.i$ worth mentioning here that both
Argo and RAMA data are assimilated in the modelwéeer, due to the lack of an
independent data source for the validation of thessrface temperature and salinity structure,
we used this data set to explore how well the madsimilation tracks these observations.
The ability of these gridded observations to repméshe spatial structure of temperature field
accurately depends primarily on the spatial densftythe observations and also on how
frequently the observations are made. It is impdrta mention here that we cannot rely

absolutely on the Argo gridded temperature fieldagsess model output; however it does



provide a broad idea of the model performance ogelapatial scales. The data from two
Triangle Trans Ocean Buoy Network (TRITON) near a&quial locations (1.5°S, 90°E and
5°S, 95°E) in the 10 were not assimilated durin@£0w~hich provides a unique data source to
validate the model vertical temperature sectiothese locations. The RAMA buoy measures
time series of temperature and salinity continupasidepths of 1, 10, 13, 20, 40, 60, 80, 100,
120, 140, 180, 300 and 500 m and 1, 10, 20, 401@D.and 120 m respectively. We consider
measurements at 1 m nominally as from the surface.

The seasonal climatology of surface current padtesimulated by the model is
compared with Ocean Surface Current Analysis-R@aeTOSCAR) currentsBonjean and
Lagerloef,2002 Johnson et al.2007] as well as with drifter currents producedhtwry Surface
Velocity Program (SVP) of the Tropical Ocean Glol#dmosphere (TOGA) experiment
[Lumpkin and Garraffo2005] The OSCAR currents represent an upper 30 m avefagsar
surface currents and have the advantage of prayidimore complete spatial and temporal
coverage. It is important to mention that the OSCARrents are not strictly observations;
instead, they are computed from the geostrophiocitgl calculated from satellite altimetry
sea level data, the Ekman velocity calculated fsurface winds, and the velocity associated
with the surface buoyancy gradient using dynamacal statistical method&dgerloef et al.,
1999]. A comparison of OSCAR currents with curreintsn RAMA buoys in the 10 shows
large inconsistencies, both in magnitude and pffagg&e not shown). It is worth to be noted
that the drifter currents, highly interpolated dwethe sparse sampling, and the smoothed
OSCAR currents are not reliable sources for quatinté comparisons. However, for a
gualitative evaluation of the surface circulatidrttee model, these two datasets are employed
here.

We have also computed near-surface Ekman curreots the QuikSCAT surface
wind vectors Wentz et al.,2001] following Pond and Pickard[1983] and geostrophic

currents derived from the AVISO merged SSHA follog/iFu and Cazenavf001] which



captured more realistically the spatial and temipeaaation over the 10. The data were also
utilized to assess the near-surface circulatiotepain the northern 10. The QuikSCAT and
NCEP2 wind data are also used to explain the ldigerepancy in the equatorial current
between the NCEPEXP and QSCATEXP.

Horizontal currents at 10 m depth derived from RAM#oustic Doppler Current
Profilers (ADCP) McPhaden et al.,2009] were used to validate the interannual and
intraseasonal variability of ocean surface curre@grrent observations from two ADCPs
fitted to deep sea moorings deployed at 90 E an8l BGalong the equator were also used to
validate the vertical structure of the equatorialrents. These two data sets provide a unique
opportunity to analyze quantitatively the modeltial current profiles. The ADCP measures
currents from the sea surface down to 400 m dewth, vertical interval of 10 m. However,
to avoid contamination of signals reflected atsheace as well as the limited data coverage
in the deeper level, only the data between thehdepit40 m and 400 m are used in this study.
Volume transport estimates provide another wayatilating model current profiles and such
estimates from ADCP measurements at 80.5 E and 6 Ehe equator have been used for

this purpose. The volume transport per unit widdmf 40 m to 200 m depth is computed by
40m

using the expression udz (2)
200m

In order to understand the model’s ability to captintraseasonal and interannual

variability, we performed time series analysis ae8cted regions of the IO and for whole 10

basin for D20, MLD, SST and SSHA. Figure 4.1 shdages in the 10 used for the time

series analysis. The boxes are identified asGéetral Arabian SedCAS-62.5°E, 67.5°E;

12.5°N, 17.5°N), theCentral Bay of Benga(CBOB-87.5°E, 92.5°E; 12.5°N, 17.5°N), the

Lakshadweep Sea (LAK-70°E, 75°E; 5°N, 10°8pmalia(SOM-50°E, 60°E; 0°, 10°N), the

Wyrtki Jet (WYRT-80°E, 90°E; 2.5°S, 2.5°N) region, thedonesian ThroughflowITF-

100°E, 110°E; 20°S, 10°S) region, tBeuth Equatorial Curren(SEC-65°E, 75°E; 17.5°S,

12.5°S) region and the whol® basin(I0-30°S, 30°N; 30°E, 120°E). In order to understan



the ability of the model to capture the westwardpagating features in SSHA and D20,
longitude-time diagrams are plotted for these patams along 10°N, 5°N, Equator, 5°S, 10°S

and 25°S.
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Figure 4.1. The boxes show the location of selectgtbn in the 10 used for the time series
analysis. Central Arabian Se@CAS, 62.5°E, 67.5°E; 12.5°N, 17.5°N), tleentral Bay of
Bengal (CBOB-87.5°E, 92.5°E; 12.5°N, 17.5°N), the Lakshadp Sea (LAK-70°E, 75°E;
5°N, 10°N),Somalia(SOM-50°E, 60°E; 0°, 10°N), th&/yrtki Jet(WYRT-80°E, 90°E; 2.5°S,
2.5°N) region, théndonesian Throughflo{dTF-100°E, 110°E; 20°S, 10°S) region, theuth
Equatorial Current(SEC-65°E, 75°E; 17.5°S, 12.5°S) region and thelavkO basin (IO-
30°S, 30°N; 30°E, 120°E).

Quantitative analysis is performed by calculattatistical parameters such as
standard deviation, correlation, mean differencas(bmodel-observation) and root-mean-
square error (RMSE). All of the statistical caldidas are done only during the period when
both data sets are availablBor the validation analysis, the daily averaged eoled

parameters are further averaged to pentads (5 taysatch the resolution of the model data.



For better representation of these statistical patars, we used Taylor diagram&aylor,

2001], which provide a unique way of graphicallyrsnarizing the statistical relationships

between different model fields and observationse Thaylor plot summarizes the standard

deviations of the observations and the model db&ir correlation and the RMSE between

them. In the Taylor diagram, the correlation isicgated by the angle from the vertical (radial

lines are plotted for reference). The estimatedabdity (standard deviation) is indicated by

the distance to the origin (a red dashed arc ofcéeds plotted for reference; a green line is

standard deviation of the observations). In theldragiagram the data points for QSCATEXP

and NCEPEXP are shown as green and yellow cird@epectively. The observation data

point is marked as a black circle on the x-axise RMSE is represented by the radial

distance between the observation and model datasp@n amplitude spectrum based on the

Fast Fourier TransformEmery and Thomsor,998] is used to examine the ability of the

model to capture the amplitude of intraseasonatadsy The sources, resolutions, and the

accuracies of the data sets utilized in this sam@yshown in Table 2.1.

Table 2.1. Source, temporal and spatial resolutsond accuracy of data sets used in the

validation
Parameter Data source Spatial and temporal Accuracy
resolution
AVISO Blended Selwww.aviso.oceanobs.com 0.33°X0.33°, 2.5-4 cm
surface height anomaly. 7-day composite
Ol TMI+AMSRE SST WWW.SSMi.com 0.25°, daily -
RAMA Temperature www.pmel.noaa.gov/taol, 10, 13, 20, 40, 60, 8§+0.003°C &
100, 120, 140, 180, 30(+0.05°C
and 500 m depth, daily
RAMA Salinity www.pmel.noaa.gov/tao| 1, 10,,280, 60, 100 an+0.02




120 m depth, daily

OSCAR current www.oscar.noaa.gov/ 1°, 5-day -

Ol interpolated ARG(Qwww.projets.ifremer.fr/cql1°, weekly --

temperature and salinity |riolis

WOAQ9 temperature arwww.nodc.noaa.gov/ 1°, monthly --
salinity

Drifter current www.nodc.noaa.gov 1°, monthly --
ADCP current profiler www.pmel.noaa.gov/taq  Daily 5 ¢m &', +5°
Dopper current meter www.pmel.noaa.gov/tao  Daily cwbs’,

+2.5°

5. Validation of GODAS-MOM4p0 in the Tropical Indian Ocean.
5.1 Sea surface Temperature
5.1.1 Mean monthly evolution

Figure 5.1 shows the monthly evolution of multi-yeaerage (2004-2009) SST from
NCEPEXP, QSCATEXP and TMIAMSRE. The outputs obtdifrem two model runs show
reasonably good agreement with the observations. éMolution of the seasonal cycle of
spatial patterns has been captured realisticallgutihout the IO domain. Generally, the
model shows a very small warm bias (0.3°C) comp#rdtle observations with the exception
of a very few localized regions such as the heagbe Somalia coast and the southwestern
equatorial 10. The SST differences between model abservation in these regions are
relatively large and have a strong seasonal depeed®lodel SST in the head-bay shows a
warm bias (>1°C) during the months of Decemberudanand February (winter monsoon)
and also during the months of July, August and &aper (summer monsoon). This warm

bias disappears during March, after the winter@easd during September at the end of the




summer monsoon season. Model SSTs along the coa§&smali and Oman also show a
warm bias (> 1°C) during June, July and August.sEhare the regions where strong wind
induced upwelling occurs during the summer monsseason. However, this warm bias
dissipates in September. The similarity of the ltssobtained from each of the two model
runs suggests that the wind forcing may not bectuse of these discrepancies. A studgéy
Boyer Montégut et a[2007] showed that, during summer monsoon the hedget in this
region is strongly dominated by the upwelling aldhg Somali and Oman coasts. The model
simulated D20 along Oman coast shows a narrow sfiripelatively deeper thermocline
compared to that of the observation (Figure 5. hjs suggests the possibility that upwelling
in the model is too weak. In a nutshell, the Igpgsitive bias in the model SST in this region
during this season may be associated with unredadeeanic processes in the model. The
southwestern equatorial 10 region (Seychelles-Cedagermocline ridges¥hows a cold bias
(of around 0.5°C) during December, January andW&elr and the spatial extent of the cold
bias is relatively large in QSCATEXP. Except foesk regions and time periods where there
is bias, the model does a very good job in simudp8ST. The probable reason for these large
biases in certain locations has to be examinethdurin detail using the model heat budget
analysis. It is worth mentioning here that theraassignificant difference between the multi-
year averages derived from NCEPEXP and QSCATEXP.

The mean and standard deviation of SST from theetnadd TMIAMSRE during
2004-2009 are shown in Figure 5.1.2. The similantyhese statistics for the model and the
observations suggests that the variability and nuandition are represented by the model
very realistically. It is notable that, there id ewen a single location that could be singled out

as showing a significant difference between theehadd observed SST.



Figure 5.1.1. Monthly evolution of multiyear aveeagpf SST (°C) derived from (a)
TMIAMSRE (b) NCEPEXP (c) QUIKEXP and the differebetveen model and observation
(d) NCEPEXP and TMIAMSRE and (e) QUIKEXP and TMIRHES



Figure 5.1.2. Multi-year (top panels) annual aveeagnd(bottom panels) standard deviation
of SST (°C) derived from (a) NCEPEXP (b) QUIKEXf éc) TMIAMSRE during 2004-
20009.

The bias of the model SST relative to the obsewnatitheir correlation and the RMSE
of the model SST are shown in Figure 5.1.3. Ovetlal model is about 0.2°C warmer. In the
southwestern equatorial 10, the model SST is cothamn the observations above the
thermocline ridge. The model also has a relativ@hallow thermocline with respect to
observations (10-15 m) in this same region (Fig&.2). The recent study by
Vinayachandran and SaJR008] showed that the oceanic entrainment of ¢bk&trmocline
water into mixed layer plays an important role indulating the mixed layer temperature in
this region. The relatively shallow thermocline mtidhave caused the entrainment of cold
thermocline water into the mixed layer in the mosiehulation leading to excessive cooling
in the region of the thermocline ridge. A warm bad<.4°C is shown by the model offshore
of the Oman coast and a bias of more than 0.5°hethead-bay. Elsewhere the model-
observation difference is only -0.2°C to +0.2°CeTdorrelation between the model SST and
observations is larger than 0.8 in most regionghénvicinity of the equator in the central 10
and along the whole west coast of India the caiicaias slightly less than 0.7. This suggests
that regions of small amplitude variability havevir correlations compared to those having

higher amplitude variations. The RMSE has a valu@.%°C, which is less than the standard



deviation, as expected, in the IO dom&enan et al[2001] validated the TRMM SST in the
IO region and found that the RMSE differences betwgatellite anth-situ observations fell
within the range of 0.39-0.60. It is interestingriote that, the RMSE of the model SST is
within in the range of the TRMM RMSE over a majaripof the 10.However, in certain,
locations such as the Northern part of the Sonwast; the Oman coast and the head bay the

model RMSE exceeds 1°C.

Figure 5.1.3. Bias (bottom panels) of the modelwaet SST (°C) with respect to observation,
RMSE (middle panels) and correlation (top paneksiween the model SST and TMIAMSRE
SST for (a) NCEPEXP and (b) QUIKEXP during 2004200



5.1.2 Intra-seasonal and inter-annual variability

Figure 5.1.4. Time series plot of SST (°C) (200d92(veraged over 8 selected regions in
the 10 and averaged over entire 10 (as indicatedha legend). The statistical parameters

are also shown along with the plot at the top aftepanel.



Figure 5.1.5. Taylor diagrams showing the SST (p€)formance of two model-runs in
comparison with observation for 8-selected regionshe IO region. (The plot summarizes
the correlation, and standard deviation of each tbé QUIKEXP (green circle) and
NCEPEXP (yellow circle) with respect to observatifblack circle in the x-axis). The
correlation is indicated by the angle from the it (straight lines are plotted for
reference). The estimated variability (standardidien) is indicated by the distance from the
origin (a curved red dashed line is plotted foremdnce, green line is standard deviation of

observation).

Figure 5.1.4 shows time series of SST from the rhade the observations during the
period of 2004 to 2009 at eight selected locationghe 10 and averaged for the whole 10
basin (the details of the box selected for thidymmhas been discussed in section 4 covering
the data and methodology). The location of eacle theries appears at the top of each panel
in Figure 5.1.4 and the statistics for each isasented graphically in the form of a Taylor
diagram in Figure 5.1.5. The plots along with tleeresponding statistics clearly show that
the model does an excellent job of capturing thieageasonal as well as interannual
variability both in magnitude and phase. The SSé&rage for the whole 10 basin shows a
nearly perfect match in magnitude and variabil®yl. the locations have a correlation of

greater then 0.95 with the exception of Lakshadw@g#K), where it is 0.87. At the LAK



region, during March-December 2006, an SST diffeeeaf 0.8°C is observed in both the
experiments with respect to observation.

Earlier studies have reported the existence ohgtintra-seasonal SST variations of
10-90 days periodicity in the Tropical IGG¢ngupta and RavichandraB001, Rao et al.,
2006a Parek et al.2004]. In order to check the ability of the mottetapture the amplitude
of these intra-seasonal variations, we have cordptite amplitude spectrum time series at
eight locations. Figure 5.1.6 shows the amplitygectum of SST at each of these locations.
The intraseasonal variations have been capturetthdynodel at six of these locations, the

exceptions being the LAK and SEC regions, wherdithe series showed disagreement.

Figure 5.1.6. The FFT amplitude (°C) spectrum oF 888 regions in the 10.



5.2 The depth of 20°C isotherm and vertical tempetare structure.
5.2.1 Mean monthly evolution

The ability of the model to reproduce the climagié@l monthly evolution of D20 is
evaluated using WOAOQ09. The monthly evolution of D#erived from the WOAOQ09
climatology, the multi-year average (2004-2009N&EPEXP and that of QSCATEXP are
shown in Figure 5.2.1. The spatial variability b&tobserved D20 is accurately reproduced by
both of the model runs. The location of the maxamd minima, their spatial extent and their
phase are well captured by the model in both erparis. The differences between the model
output and the observations show localized higlueslin some discrete locations south of
10°S, in the southwestern equatorial 10, and indastern equatorial 10. The D20 derived
from observations shows some deficiency in resghdgnamical spatial structures at some
locations which are seen in the model output. Kamnele, during June and December, the
model shows westward propagating Rossby waveshaabtl 5°S in the eastern 10 and the
signature of these waves is also clearly evidenhenSSHA climatology (Figure 5.4.1). But
this feature is not visible in the D20 climatolodgrived from the WOAOQ9. This discrepancy
creates large differences between the model andldbervations in the eastern equatorial 10
during the above mentioned months. During summensoon, model captures upwelling in
the form of the shoaling of the thermocline betw#ensouthern tip of India and the Sumatra-
Java coast and this feature is also consistenttiw@élSSHA climatologyHence, differences
in the D20 between the model and the WOAQ09, maybeatolely due to errors in the model.
The persistence of relatively large positive diéferes (+ 15 m) between the D20 derived
from the model and the WOAOQ9 south of 10°S willdigcussed later in this section. In a nut-
shell, both QSCATEXP and NCEPEXP capture all of thenatological features in a
reasonably good manner. The multi-year average®4(2008) of D20 derived from the two

model runs do not show any significant differences.



Figure 5.2.1. The monthly evolution of D20 (m) ded from (a) WOAQ9 climatology, multi
year average (2004-2009) of (b) NCEPEXP, (c) QSOMT Hifference between model and
observation (d) NCEPEXP and WOAOQ9 (e) QSCATEXP/OA009.



Multi-year (2004-2008) annual mean and standardatiem of D20 derived from
QSCATEXP, NCEPEXP and the Argo gridded productsti@wvn in Figure 5.2.2. The model
shows excellent skill in capturing the annual mepatial pattern of D20 with respect to these
observations. The spatial structure of the obseD2@l variability is accurately reproduced by
both the model runs. However, the magnitude ofver@bility is stronger in the model D20.
The strongest variability is seen in the region§Somalia coast, the west and east coasts of
southern India and along 8°S in the southwesternTi@ least variability is seen in the
central equatorial 10, the central Arabian Sea #uedcentral Bay of Bengal. It is interesting
to note that the spatial pattern of standard dewiabf model D20 matches well with the

standard deviation of the observed SSHA variability

Figure 5.2.2. The annual mean (top panel) D20 (@ojtom panel) standard deviation of D20
(2004-2008) derived from (a) ARGO (b) NCEPEXP (§GATEXP during 2004-2008 (D20

is in m).

The bias (model-observation) between D20 derivechfArgo gridded product and
the model are shown in Figure 5.2.3 (bottom parigbth the model runs show reasonably
good agreement with observations with biases of m Borth of 20°S. A relatively large
positive bias (10-15 m) is seen south of 20°S. RMSE between the D20 derived from the
Argo gridded product and the model D20 are showrrigure 5.2.3 (middle panel). The

RMSE is large where the standard deviation is la@gnerally the RMSE is small relative to



the amplitude of the variations observed in theT@e correlation between the observed and
the model D20 is shown in Figure 5.2.3 (top). Ther@ation coefficient is relatively high (>
0.70) over the major part of the basin, particyladrth of 15°S, except at few locations such
as the Andaman Sea and the northern Bay of Behligalworth mentioning here that, these
are the regions where Argo observations are relgtisparse. So the above analysis indicates

that the model does a reasonably good job of e8ti;m®20, both in magnitude and phase.

Figure 5.2.3. The bias (bottom panels) of the madielived D20 (m) with respect to
observation, RMSE (middle panels) and correlatiimp (panels) between the model D20 and
observation for (a) NCEPEXP and (b) QUIKEXP durz@p4-2008.

5.2.2. Inter-annual and intra-seasonal variability.

The ability of model to capture the D20 variabilay intraseasonal and interannual
time scales is examined using the Argo gridded tgatpre product. Although it cannot be
assumed that the Argo gridded temperature fieltbtslly reliable for assessing the model
output, particularly D20, it gives a broad idea @bthe model performance on large spatial
scales. The satellite derived SSHA representssadnder approximation of the upper ocean
thermal structure, except in the regions of largst water influx such as the northern Bay of
Bengal [Yu,2003]. The vertical movement of the thermoclin@ssociated with variations in

the heat storage of the ocean caused by anomalibg isubsurface temperature field and its



signature is clearly visible in the SSHA. Hences AVISO merged and blended SSHA data
[AVISO, 2009] is used for qualitative assessments of thes@ltand amplitude variations of

thermocline variability simulated by the model.

Figure 5.2.4.a. Longitude-time sections of D20 ¢fmjived from (a) gridded ARGO product
(b) NCEPEXP (c) QSCATEXP and (d) SSHA (cm) alofiy.10

Figure 5.2.4.b. Same as Figure 5.2.4.a, but alotig.5



Figure 5.2.4.c. Same as Figure 5.2.4.a, but aloggdor.

Figure 5.2.4.d. Same as Figure 5.2.4.a, but alotg 5



Figure 5.2.4.e. Same as Figure 5.2.4.a, but alddft1

Figure 5.2.4.f. Same as Figure 5.2.4.a, but alobtx2



Figure 5.2.5. Temporal evolution of model derivedH8 (cm) from QUIKEXP (green),
NCEPEXP (black) and satellite derived SSHA (blge))20°N, 90°E, (b) 5°N, 90°E, (c)
20°S, 80°E and (d) 25°S, 80°E.

The IO experiences large variations in the winttfextending from intra-seasonal to
inter-annual time scales and they have a signifisgdluence on the vertical movement of the
thermocline by local Ekman pumping and remotelypbypagating Rossby and Kelvin waves
[Rao et al.2008;Rao0 et al.,2010] In order to understand the ability of the modetapture
these features, longitude—time plots of D20 an#iS%long 10°N, 5°N, the equator, 5°S,
10°S, and 25°S from 2004-2009 are shown in Figu2el5The D20 from both the model runs
capture the westward propagating signal reasonably in terms of magnitude and phase
speed with respect to the observed D20 and SSHA.shbaling of the D20 during the 10D
year 2006 along the Sumatra and Java coasts and/avdss reasonably well captured by
both model simulations. However, the model anddbgerved (Argo gridded product) D20
could not capture the small westward propagatirguies in the SSHA as seen along 25°S

(Figure 5.2.4.d). To understand the inability oé tmodel to simulate the small westward



propagating features in the southern IO while iesleo elsewhere, SSHA data from the
altimeter and that derived from the model differerations (20°N, 90°E, 5°N, 90°E, 20°S,
80°E and 25°S, 80°E) are shown in Figure 5.2.% ihteresting to note that model picks up
the variability very well at 5°N, 90°E, but the @bnce between the SSHA derived from
model and observed decreases as latitude incredses.model resolution at 25°S is
approximately 0.48° x 0.50°, which is very closetihe Rossby deformation radius at this
latitude. The spatial resolution of the model camesolve the small scale eddies that are seen
in the SSHA at 25°S. It may be the primary reasamtlie discrepancies in the model at
higher latitudes. Increasing the model horizom@adolution and using a better eddy
parameterisation scheme would be able to solveptiriscular problem.

The temporal evolutions of D20 derived from botke tmodel runs and the Argo
gridded product at 8 selected locations in the h@d averaged over the whole 10 basin are
shown in Figure 5.2.6. The statistics of the modelived D20 with respect to the
observations are written at the top of each pamdfigure 5.2.6 and they are graphically
presented in a Taylor diagram in Figure 5.2.7. Fedu2.6 and Figure 5.2.7 clearly shows that
in most of the regions, the model successfully wagst the amplitude and the phase of the
intra-seasonal and inter-annual variability. Therelation coefficient is reasonably high (>
0.80) at all locations except at CBOB, where theetation is about 0.70. The standard
deviations of the D20 derived from the Argo gridgadduct and the model for the periods
when both data sets are available, are comparabtest of the locations. The RMSE in most
regions is less than 10 m, and it is less thansthedard deviation in all regions. The bias
between the Argo and the model derived D20 is énréimge of 1-4 m. It can be seen from the
diagram that in most of the regions, the model B&@ability is within 2-6 m of the observed
with the least difference off the Somali Coast.rirrthe Figure, it is also clear that, both the
models show excellent skill to capturing the vaitigbof the D20 in the equatorial 10. To

better understand the model’s ability to captueedamplitude of the intraseasonal variability,



the amplitude spectrums of D20 for 8 selected lonatover the 10 are shown in Figure

5.2.8. The model shows reasonably good abilityesolve the amplitude of the observed

periodicities of the intraseasonal signal.

Figure 5.2.6. Time series of D20 (m) (2004-2009)weel from objectively analyzed ARGO
gridded temperature data (black) NCEPEXP (red), @SEXP (green) averaged over 8
selected regions in the 10 and averaged for ther@d© (as indicated in the legend) (see
section 4 for the description about each regioihg statistical parameters such as mean,

correlation, standard deviation and RMSE are shawthe top of each panel).



Figure. 5.2.7. Taylor diagram showing the D20 (n&rfprmance of two model-runs in
comparison with observation for 8-selceted regiornthe 10 region (see section 4 for the
description about each regipn

Figure 5.2.8. The FFT amplitude spectrum of D20 &tr§ regions in the 10 (see section 4 for
the description about each region).



5.2.3. Vertical temperature structure

Figure 5.2.9.a. Depth-time section of temperat¥e) from (a) QSCATEXP, (b) NCEPEXP
and (c) from TRITON buoy at 1.5°S, 90°E. The rigiate of plot shows the statistical
parameters such as (d) mean [QUIKEXP (green) NCHM™E2{) and buoy (black)], (e)

RMSE between model and observation [thin line, (BXR vs buoy (green), NCEPEXP vs
buoy (red)] and standard deviation of model andesbation [dashed line, QUIKEXP vs
buoy (green), NCEPEXP vs buoy (red)] and (f) catien with model and observation
[QUIKEXP vs buoy (green), NCEPEXP vs buoy (red)].

Figure 5.2.9.b. Same as Figure 5.2.9.a, but at&?& 95°E.



The ability of model to capture the vertical tengiare profile is analysed in the
equatorial 10. Figure 5.2.9.a and Figure 5.2.9dnshdepth vs. time sections of temperature
from two TRITON buoy locations, 1.5°S, 90°E and 595°E in the Equatorial 10, along
with their statistics during 2004. The data fronesh 2 buoys have not been used for
assimilation during 2004, and thus they providenmue source of independent observations
to evaluate the model performance in the eastemategal 10. The figure shows that both
experiments capture the seasonal evolution witidgebability at both buoy locations. The
standard deviations of the observations and theehredeal that both model experiments are
able to reproduce the variability throughout thetewecolumn. The RMSE between the
observations and the model is relatively large 4%0) at depths of 60-100 m. However, the
RMSE is generally less than the STD. In summaryh oodel experiments simulated the

vertical temperature structure over time in goocament with observations.

5.3 Sea Surface Salinity

Figure 5.3.1 shows spatial plots of the sea surfasaknity from NCEPEXP,
QSCATEXP and WOAO09. The difference between the m@d€EPEXP) and observation is
shown in Fig. 5.3.2. The analysis shows that thihoug the region, with the exceptions of the
southeastern Arabian Sea and the head-bay, thel mhoete a very good job in simulating sea
surface salinity such that the difference (modeeyvation) is only £0.3 psu (Figure 5.3.2).
In the regions of the southeastern Arabian Seathaedhead Bay, the model shows large
salinity biases (x 1) in the seasonal variability.

A large bias (> 1 psu) is seen in the surface alim the southeastern Arabian Sea. A
positve bias appears in January, remains strormughr February, March and April and
disappears by June. It is interesting to note tthiatpositive anomaly spreads westward seem
to be associated with westward propagating dowrmgeRossby wavesShankar and Shetye,

1997 Shankar et al.2002] observed during this time. From Septemberasds; a negative



bias appears, strengthens into November and dissipa December. The problem with
surface salinity in the southeastern Arabian Sdahei discussed further beloirao and
Sivakumar [2003] showed that there is a dominant role forizumtal advection in
redistributing salinity in the 10 region. A more tdidked analysis of currents and their

influence on the model simulated salinity will bisalissed in section 5.5.

Figure 5.3.1. The climatology of sea surface safifpsu) from (a) NCEPEXP (b) QUIKEXP
and (c) WOAOQ9.



The head Bay shows a positive bias (> 1 psu) irsd@esurface salinity during July-
February and a negative bias (< 1 psu) during Apmie.Rao and Sivakumg2003] have
studied the seasonal cycle of the fresh water drggs from five major rivers along the east
coast of India (Figure 5.3.3). Their study showatthall these rivers have a pronounced
annual cycle with peak discharges during the summeansoon season. That is, the river
discharges increase from June onward, peak in Atggistember and decrease afterwards.
The annual average of the river discharge, whichbbeen input to the model, will provide
more (less) freshwater input in to the head Bayindudanuary-May (June-September)
compared to its seasonal cycle. The negative (pekibias is seen during April-June (July-
February) is associated with this use of a consantal river discharge rather than a more
realistic seasonally varying discharge. It suggtsisusing a monthly varying river discharge
would help produce a reasonable surface salinityhen head Bay and the south eastern
Arabian Sea. In the current GODAS-MOM we assimilsyathetic salinity profiles which
might have led to significant problem in the saiirfield. Assimilation of observed salinities
would have improved the salinities.

A small negative bias (0.5 psu) in surface salimtyseen in the eastern and central
equatorial 10 at around 5°S-10°S during June-SdpgenThis is the region, where a tongue
of low salinity waters with an east-west gradienwveh by the Indonesian throughflow is
found Masson et al.2002; Rao and Sivakumar2003]. Earlier studies reported that, the
Indonesian throughflow shows a strong seasonahbgity with a maximum transport during
June-July (15 Sv) and a minimum transport duringré&ary (5 Sv). The negative bias, which
is seen along south of the equator in the modehguune-September may be associated with
the inability of the model to carry appropriate amb of freshwater by Indonesian
throughflow. During July-August, there is a largegative salinity bias in the south eastern
BoB. Southward current at eastern BoB (figure 5.@lbng with anomalous equatorial

westward current (see discussion in 5.5) may adhectow salinity bias from eastern BoB to



the region mentioned above. However, these eff@sts cannot be ruled out. The analysis
provided here is qualitative in nature. In ordedtoa more quantitative analysis, the error in
the precipitation and evaporation and its relatgatribution to model derived salinity needs
to be looked at in detail. The assimilation of aled salinity instead of synthetic salinity

could have improved the model salinity field.

Figure 5.3.2. The sea surface salinity (psu) (agethfor 2004-2009) difference between
NCEPEXP and WOAOQ9.

Figure 5.3.3. The annual cycle of discharge fromamavers into the Bay of Bengal (from
Rao and Sivakumar , 2003).



5.4 Sea surface height anomaly

5.4.1 Mean Monthly evolution

Figure 5.4.1. Monthly evolution of multiyear aveea@004-2009) of SSHA (cm) derived from
(@) NCEPEXP, (b) QUIKEXP and (c) altimeter, diffece between model and observation,
(d) NCEPEXP and altimeter and (e) QUIKEXP and adtien.



The monthly evolutions of multi-year averages 0002-2009) SSHA, which is
derived from NCEPEXP, QSCATEXP and altimeter dadad the difference between
NCEPEXP and QSCATEXP with respect to the altimelmia are shown in Figure 5.4.1. It
reveals that both of the experiments are ablepootkice the seasonal evolution of SSHA as
seen in the observations with significant accuratlge seasonal cycle of the observed
variability of planetary wave motions (Kelvin ana$sby waves) over the 10 is reproduced
with good skill in both model runs as reported arlier studies Yang et al.,1998; Prasad
and lkeda20031, Shankar et al.2002 Rao et al.2010]. The difference in the SSHA between
the model and the observations is around + 3 cra.abeuracy of the altimetry product is 2-4

cm.

However, there are a few discrepancies such agsasiéive (negative) value of SSHA
in the east and in the head bay is overestimatadefestimated) by > 3 cm (< 3 cm) in
NCEPEXP and QSCATEXP during April-June (Septembard®l). The Figure 5.3.2 shows
the sea surface salinity difference between theainadd the WOAOQ9. It shows a negative
(positive) bias of salinity in the model > 1 psuX<gpsu) during April-June (July-February).
Errors in the model salinity might be the causehef model SSHA errors, since the salinity
contribution to the sea level is significant in tiead Bay Yu, 2003 For example, a salinity
error of 3 units in a 30 m thick mixed layer wilrgoluce an error in the SSHA of
approximately 6 cm. Neither experiment could captine small scale eddy structures in the
southern 10 around 25°S. Although a strong posiinegative) bias appears west of Australia
during December-April (August-October) in both ewp®ents, there is significantly less bias
in QSCATEXP compared with NCEPEXP over this regioming these months. During July-
August, in the south central equatorial 10 (aro&i®), both of the experiments show a
positive bias in the SSHA field, while at the satinge showing a negative bias in salinity (0.5

psu). However, more detailed analysis is requicedriderstand the relative contribution of



salinity, which leads to errors in SSHA over thesgions. During October, in the North East

Madagascar region, both model runs overestimae&8HA.

Figure 5.4.2. the standard deviation of SSHA (chop(panel) derived from altimeter(left)
NCEPEXP (middle) and QSCATEXP(right) during 200020The correlation (middle
panel) and RMSE (bottom panel) between SSHA defread the model and altimeter for
(left) NCEPEXP and (right) QUIKEXP during 2004-2009

Figure 5.4.2 shows the statistics of the model SS¥#tA respect to observations for
the period 2004-2009. The analysis shows thatitbéel could capture the variability of the
SSHA reasonably well. However, the model showsdargriability than the observations in
the northwestern Arabian Sea and west of the Anddsiand chain. The correlation between
the model SSHA and the observed SSHA is large T8)0within the latitude belt of 10°S-
10°N, and decreases poleward. One possible reasomig kind of structure in the correlation
may be associated with the model’s horizontal ggm. The RMSE shows relatively small
values in the equatorial 10, and relatively largéues along the Somalia coast, in the western

Bay of Bengal and in the southern 10. The RMSEess ithan the STD.



5.4.2 The intraseasonal and interannual variability

The existence of large intraseasonal and interdnrarability of SSHA in the TIO
has been reported by earlier studis&dndar et al.2005; Sakova et al2006 Vialard et al.,
2009 Rao et al.,2010]. The ability of the model to capture the asgasonal and interannual
variability of SSHA has been examined. The 5.4@s hovmoller diagrams of SSHA along
10°N, 5°N, the Equator, 5°S, 10°S and 25°S. Tharéigclearly shows that the model can
reproduce the intraseasonal and interannual vétyaioi both amplitude and phase with good
accuracy, except at 25°S. At this latitude the rhootmuld not capture the westward
propagation of small scale eddies, which is segharaltimeter data. This is another instance
where the model resolution may be a limiting factois interesting to note that the model
could reproduce the 10D signature in the SSHA fialdFigure 5.4.3.c as a negative value of
SSHA during 2006 (Figure 5.4.3.c) along the eastard of the equator, with excellent

accuracy in terms of the time of onset and westwatednsion.

Figure 5.4.3.a. Longitude-time sections of SSHA) (darived from NCEPEXP (left),
QSCATEXP (middle) and altimeter (right) along 10°N.



Figure 5.4.3.b. Same as Figure 5.4.3.a, but albtd.

Figure 5.4.3.c. Same as Figure 5.4.3.a, but alomgpaéor.



Figure 5.4.3.d. Same as Figure 5.4.3.a, but alb?s)

Figure 5.4.3.e. Same as Figure 5.4.3.a, but albdtp.



Figure 5.4.3.f. Same as Figure 5.4.3.a, but al@hgfs.

Figure 5.4.4 shows the time series of SSHA (200392@lerived from the altimeter
data, the NCEPEXP and the QSCATEXP averaged oed8 telected locations in the 10 and
averaged over the whole 10. Time-series plots ssigtfat there is an excellent agreement
between SSHA from the model and the observatiortgp CBOB and SEC. At all locations,
the model follows the observed structure very wthtistical parameters such as RMSE,
standard deviation and correlation are given inttide 5.4.1. The correlation is generally
higher than 0.70 at all locations except CBoB ak& Swhere the correlation is slightly less
than 0.70. Similarly, the standard deviation of 8&HA at SEC and CBoB shows relatively
large values in the model compared to observatiahdle in other regions it is comparable
with the observations. In addition, in the SEC &M8oB regions, the RMSE in the model
with respect to the observations is larger than S3¥Dthe observations. The statistical

relationships are summarized graphically in Tagli@grams Taylor, 2001] in Figure 5.4.5.



Figure 5.4.4. Time series of SSHA (cm) (2004-200&)ived from altimeter (black),
NCEPEXP (red), QSCATEXP (green) averaged over 8ctsl regions in the 10 and
averaged for entire 10 (as indicated in the legefgbe section 4 for the description about

each region).



Figure. 5.4.5. Taylor diagram showing the SSHA (@ajformance of two model-runs in
comparison with observation for 8 selected regionthe 10 and for entire 10 (see section 4

for the description about each region).

In order to understand the model's ability to captthe amplitude of intraseasonal
variability, an amplitude spectrum was computed tfeeg SSHA from the model and the
altimeter. Figure 5.4.6 shows the results for tleel@cted regions in the 1O and for the entire
0. The Figure 5.4.6 shows that the model is ableapture the amplitude of intraseasonal
and seasonal signal reasonably well. In summaegyntbdel performs well in simulating the

SSHA in the 10.



Figure 5.4.6. The FFT amplitude spectrum of SSHA) (derived from altimeter (black)
NCEPEXP (red), QSCATEXP (green) for the 8 seleatgtbns in the 10 and for entire 10

(see section 4 for the description about each mgio



Table 5.4.1. Statistical comparison of model SS¢i) (vith altimeter data.

STD RMSE CORRELATION
Region
NCEPEXP | QSCATEXP | NCEPEXP | QSCATEXP
Altimeter NCEPEXP QSCATEXP Vs Vs VS VS
altimeter altimeter altimeter altimeter
10 1.83 1.50 1.57 1.28 1.35 0.72 0.69
CBOB 3.66 5.93 5.96 4.17 4.45 0.72 0.67
LAK 6.99 6.38 6.97 4.00 4.26 0.82 0.81
CAS 4,76 5.54 5.81 3.69 3.67 0.75 0.78
SOM 6.88 6.21 6.63 2.8 2.74 0.91 0.92
ITF 6.39 4.82 5.86 3.34 3.02 0.86 0.88
WYRT 531 5.79 5.87 2.47 1.83 0.90 0.95
SEC 3.61 531 6.07 3.96 4.69 0.67 0.64
SEYC 5.57 6.27 6.64 2.28 2.57 0.93 0.93

5.5. Ocean current

5.5.1 Mean monthly and seasonal cycle of surfacercents

The tropical 10 circulation exhibits a unique se@dareversal of the major currents

[Schott et al.2009] in phase with the monsoons. These currem¢sygsare the Somali current

(SC), the North Equatorial Current (NEC), the Wiestia Coastal current (WICC), and the

East India Coastal current (EICC). The South EquatQurrent (SEC), westward flow south

of 10°S, does not undergo any seasonal variatiodirection. During the two transition

periods between the monsoons (April-May and Octdbmrember), a strong eastward jet

called the ‘Wyrtki Jet’ Wyrtki, 1973], occurs in a narrow band trapped within 2®3the

equator driven by the equatorial westerly winds.




Figure 5.5.1. Monthly evolution of multiyear aveea@f (2004-2009) of ocean surface
currents (cm 3) derived from (a) OSCAR (b) NCEPEXP (c) QSACTEXR difference
between model and observation (d) NCEPEXP and OS@ARSCATEXP and OSCAR

during January-March.

Figure 5.5.1. (continue) during April-June



Figure 5.5.1. (continue) during July-September.

Figure 5.5.1. (continue) during October-December.

The monthly surface current pattern is compared whie monthly climatology of
OSCAR currents obtained for the period 2004-2008 monthly evolution of the surface
currents in OSCAR, the NCEPEXP and the QSCATEXm@hith their respective biases
are shown in the Figure 5.5.1. Both model runsadnle to capture the circulation pattern
reasonably well. However, the equatorial flow siatetl by the NCEPEXP during summer

monsoon is westward unlike in the observationssTdiscrepancy, both in magnitude and



direction, in the NCEPEXP is improved in the QSCAFE On the other hand, biases are
relatively small (< 10 cm Y during March and September-October in both model

experiments.

Seasonal cycleThe seasonal cycle of the surface currents are amdpwith the
climatologies of drifter and OSCAR currents. Thassns are defined as winter Monsoon
(December-January-February), spring inter-monsaddarch-April-May), summer monsoon
(June-July-August-September) and fall inter-monsd@ttober-November). The current
patterns in the model experiments along with tlegirresponding biases relative to the
observed currents are shown in Figure 5.5.2. Astivagase with the monthly evolution of
the currents, the mean seasonal surface currents agreement with the observations except
at the equator. The SEC, located south of 10 Sydlevestward during all the seasons and this
is captured by the model well. The model is alske &b resolve the seasonal reversal of the
coastal current systems and a detailed analysihase currents will be given in section
5.5.3.2. During the Winter Monsoon, both the madeiulations over-estimate the strength of
the equatorial currents compared to the OSCAR ntsré-igure 5.5.2.a). The difference is
larger in NCEPEXP. Both model runs simulate thetwasd flowing current which extends
throughout the equatorial regime. However, thisrenir system is noticeable only west of

80°E in the OSCAR currents.

The eastward flowing Wrytki Jets which develop dgrinter-monsoon periods appear
in both model simulations with the same timing. Bpeed of these jets is comparable with
observations (Figure 5.5.2.b, 5.5.2.d). QSCATEXdpces slightly stronger and more
spatially extended jets relative to NCEPEXP. Thetward flowing summer monsoon
currents (Figure 5.5.2.c) just north of equatomseethe model are in agreement with the
observations. There is a strong westward flow irEREXP along the equator which does not

occur in the observations. However, QSCATEXP daeuilate the circulation pattern as



exhibited by the drifter and OSCAR currents. In suemy, QSCATEXP has a relatively better

simulation of the equatorial currents both in magghe and direction than NCEPEXP.

Figure 5.5.2.a. Climatology of surface currents () derived from Drifter, multiyear
average (2004-2009) of surface current derived floO®CAR, NCEPEXP and QSCATEXP
(top panel; left to right) for the Winter Monsooeason (Dec-Jan-Feb). Lower panel shows

the bias from Observations.

Figure 5.5.2.b. Same as Figure 5.5.2.a, but for $ipeing inter-monsoon season (Mar-Apr-

May).



Figure 5.5.2.c. Same as Figure 5.5.2.a, but for $utenmer Monsoon season (Jun-Jul-Aug-
Sep).

Figure 5.5.2.d. Same as Figure 5.5.2.a, but forfgtlenter-monsoon season (Oct-Nov).

Annual Cycle: The annual average of the surface currents anersho Figure 5.5.3.
As seen in the monthly and seasonal evolution, dothmodel runs are able to capture the
circulation pattern fairly well with the exceptiaf the immediate equatorial region in the

NCEPEXP. The QSCATEXP simulates the eastward flgv@quatorial current as seen in the



observations, while the NCEPEXP produces westwandents west of 90°E along the
equator. Elsewhere, both model runs are companatite the observations. Figure 5.5.4
shows the statistical measures such as the staddaiation, the RMSE and the correlation of
the zonal surface currents for the period 2004-2008 high variability along the equator in
the OSCAR currents is replicated by both model rdiee RMSE is less than the standard
deviation in the QSCATEXP whereas in the NCEPEXRB,RMSE is as large as the standard
deviation. The improvement of the current in equatoregion in QSCATEXP over
NCEPEXP is clearly visible from the RMSE patterrhotigh a positive correlation with
observations is found overall in both simulaticihg QSCATEXP correlation exceeds 0.75 in

the equatorial regions.

Figure 5.5.3. Annual averaged surface currents & derived from drifter climatology,
OSCAR, NCEPEXP and QSCATEXP (from left panel tbt nmanel respectively). All the
currents are averaged through the period 2004-2008wer panel shows the difference
between model currents (NCEPEXP and QUIKEXP) arsgMations (Drifter and OSCAR).

The differences between the surface zonal curgentsrated by the model simulations
show overestimated westward equatorial currentthen NCEPEXP (Figure 5.5.5.a). The
reason for this large discrepancy between NCEPEXPQSCATEXP have been analysed in
detail. Figure 5.5.5.b shows the hovmollor diagram the zonal surface currents in

NCEPEXP, QSCATEXP and the difference between thEne hovmoller diagram of the



zonal surface currents along the equator (2 S-2iws that differences as large as 60 ¢m s
occurred through the whole period 2004 to 2009. Alifference in the current patterns
between the QSCATEXP and the NCEPEXP can be atbto the difference in the
respective momentum forcing. The surface zonal vatrdss from NCEP and QuikSCAT
along the equator (2 S-2 N) and difference betwdam are shown in Figure 5.5.5.c. The
NCEP wind stress shows a large westward wind stoess compared to QuUIkSCAT. In
addition, wind stresses are greatly underestimaatddCEP compared to QuikSCAT:. was
noted bySmith et al [2001] that NCEP underestimates the surface wow#s most of the
tropics.Goswami and Sengpfa003] also documented the deficiency of the NC&khalysis
surface winds over the equatorial 10 by comparinity QuikSCAT winds. They showed that
the major differences between the two wind prodoctaur in the equatorial 10 east of 60 E
during both monsoon seasons and they attributeddifference to a systematic error in the
precipitation in the NCEP reanalysis. It is reasb@ao speculate that the difference in
surface currents shown in the NCEPEXP and QuikS@Adue to the error in NCEP2 surface
winds in this region. However, a more detailed gsialis required to sort out the exact causes

of this large current difference.

Figure 5.5.4. (left) The standard deviation of seg zonal currents (cmi's derived from
NCEPEXP, QSCATEXP and OSCAR (2004-2009). The Rm&kl¢ panels), correlation



(right panels) between the model surface zonalentsr and OSCAR (top) NCEPEXP and
(middle) QUIKEXP during 2004-2009. In the middlenph last row shows the difference in
RMSEs of QUIKEXP and NCEPEXP with respect to OSGARNt.

Figure 5.5.5.a. Difference between annually aveda@g2004-2009) surface zonal currents
(cm s') derived from NCEPEXP and QSCATEXP.

Figure 5.5.5.b. The surface zonal currents (chhaong the equator (2°S-2°N) simulated by
NCEPEXP and QSCATEXP and the difference between the



Figure 5.5.5.c. The zonal wind stress (N)malong the equator (2°S-2°N) from NCEP2 and
QuikSCAT scatterometer and the difference betwesmn.t

5.5.2 Spatial variability of surface currents in the northern Indian Ocean

The ocean surface current variability in the magletulations was analyzed for the
three most dynamic regions of the 10- the Somalir€, the Arabian Sea and the Bay of
Bengal. Comparisons are performed using near surkdanan and geostrophic currents

estimated from satellite QuikSCAT winds and AVISGHA.

Somali Current: The Somali current (SC) system is located off tben&8li Coast and
undergoes seasonal reversals with the monsoonsSCHews equatorward during the winter
monsoon and poleward during the summer monsoonspigleds that can exceed 100 ¢ s
The SC can develop different gyres and cells depgnoin the season. During the summer
monsoon, three cells will generally form, the Soaatell, the Great Whirl and the Southern
Gyre. Figure 5.5.6 shows the Somali current sinedldly NCEPEXP, QSCATEXP and the

near surface circulation estimated from satellisgadduring the summer (top panel) and



winter (bottom panel) monsoon seasons. The moduallations replicate the seasonal
reversal of the Somali current, displaying polew#ladv during the summer monsoon and
equatorward flow during the winter monsoon (figbtg.6, lower panel). The gyres expected
to prevail during the summer monsoon and seendrcthrents computed from the satellite

data are also captured by both simulations.

Arabian Sea:The main circulation features in the Arabian Seanduthe monsoon
seasons include the West Indian Coastal currentC@) and the summer and winter
monsoon currents. Both model simulations are @bigenerate the seasonal reversal of these
currents with the monsoons (Figure 5.5.7). The nsaleof the WICC is captured well by the
model during both monsoons. During the winter monsdahe anticyclonic flow in the south

eastern Arabian Sea is well captured by both maded.

Figure 5.5.6. Comparison of surface currents (c) ever Somali region simulated by
NCEPEXP and QSCATEXP with combined Ekman and ggtbstr currents during Summer

and Winter monsoons.



Figure 5.5.7. Comparison of surface curreots §') over Arabian Sea simulated by NCEPEXP and

QSCATEXP with combined Ekman and geostrophic cusrdaring summer and winter monsoons.

Figure 5.5.8. Comparison of surface currents (ch) ever Bay of Bengal simulated by
NCEPEXP and QSCATEXP with combined Ekman and ggtbstr currents during Summer
monsoon (JJA), post-monsoon (ON) and Winter morss@iéiM).



Bay of Bengal:The circulation pattern in the Bay of Bengal dgrihe summer and
winter monsoons and during October-November is shawFigure 5.5.8. Earlier studies
show the existence of a coastal current along éiséeen boundary of the Bay, known as the
East India Coastal Current (EICCHetye et al.1996]. The EICC also has a seasonal
reversal, flowing north-eastward from February lug&ptember with a strong peak in March—
April and south-westward from October to Januaryhwhe strongest flow in November
[Shankar et al.2002]. The model captures the seasonal cycle oEtG€, reasonably well.
The anticyclonic gyre observed during the wintemsaon and the eastward current in the

northern Bay during the summer monsoon are alsoredoly well captured by the model.

The study byinayachandran et a[1999] andRao et al[2006a] showed that during
the summer monsoon, the so-called summer monsooent SMC) curves around Sri-
Lanka and intrudes into the southwestern Bay. Thieusion of the SMC into the
southwestern Bay is captured by both models. Fatigwhe end of the summer monsoon, the
southward flow of the EICC carries low saline watitom the northern Bay around Sri Lanka
to SEAS. The observational and modelling studyMayayachandran et al[2005] showed
that bifurcation of the EICC around the west cazs6ri-Lanka, and the advection of low
saline waters carried by the EICC current intogbath central Bay. However, in the model
low salinity water reaches SEAS as a strong leakhgmugh the Palk Strait (Figure 5.5.8,
middle panel). The Indo-Sri Lanka channel (ISLChgists of the shallow (< 12 m) Palk Bay
and Palk Strait to the north and the relativelypdeeAdam’s region to the south; the two
regions separated by the Pamban Pass and AdandgeBiihe Pamban Pass is a narrow pass
of about 3 km width with shallow depths of < 6 milwhPAdam’s Bridge is approximately 30
km in length with shallow depths of < 5 iRdo et al.2011]. The study bjRao et al[2011]
further suggests that both the shallow Pamban &agsAdam’s Bridge in the ISLC act as
barriers and limit the southward flow of low saliniwvaters into the Gulf of Mannar in the

south during winter. The deeper bathymetry in thgion in the model (40 m) might permit



more flow through the ISLC, instead of directingwl around Sri-Lanka. The resulting low
saline water in the SEAS during these months ([igu8.2) in the model simulation is likely
the consequence of this unrealistic flow. This eeaus flow pattern could be corrected by

reducing the depth of the Indo-Sri Lanka Channddyosimply closing it.

It is interesting to note that the winter monsoanrent simulated by the model flows
northward along the east coast of Sri-Lanka, bathéhobservations this current curves around
the southern tip of Sri-Lanka and flows westwarlle Tole of the winter monsoon current in
carrying fresh water from eastern Bay to SEAS, ipaldrly during later part of winter
monsoon is documented Byinayachandran et al[2005]. The large positive bias in the
salinity in SEAS as shown Figure 5.3.2, during ZewwFebruary may be due to this

unrealistic current around Sri-Lanka.
5.5.3 Intraseasonal and interannual variability

The existence of large intraseasonal and interdrvardabilities in the zonal and
meridional components of the surface current inl@éas earlier been reportddirty et al.,
2002 Sengupta et al.2004]. The model’s ability to capture these intesamal and
interannual signals is assessed using RAMA obsengat The time series observations of
currents at 10 m depth are available in the Bap@fgal, the south western 10, and the
equatorial regions and validations are done aethasations.

Figure 5.5.9 shows the temporal evolution of theat@nd meridional components of
the currents from the model and the RAMA buoysti§tieal parameters such as RMSE,
standard deviation and correlation are given intale 5.5.2. Using Taylor diagramBaylor,
2007 the statistical relationships are summarized lgicglly in Figure 5.5.10. It is clear
from the time series that, at most locations, QSEXF currents agree more closely in
amplitude and phase with RAMA currents than do N@EPEXP currents. The superior
performance of QSCATEXP is most notable at 12°SES7.5°N, 80.5°E and O N, 80.5°E

where QSCATEXP successfully corrects the westwasl in the NCEPEXP currents.



Figure 5.5.9. Surface currents (cnf)ssimulated by NCEPEXP, QSCATEXP compared with
currents observed by RAMA buoys.



Figure 5.5.10. (Continue) Taylor diagrams indica@tithe statistical analysis of currents (cm
s%) simulated by NCEPEXP (yellow circle) and QSCATHYRen circle) at observations
measured by TRITON buoys and RAMA buoys.

The standard deviations of the currents in modpegrents are comparable with the

observations at most buoys locations, particulanythe QSCATEXP. In general, the

QSCATEXP currents correlate with RAMA currents bethan those of NCEPEXP and the



RMSE of QSCATEXP currents is less than that of NEKP. The statistics further

emphasize the improvements in the model curreltt fieat occurred when QuikSCAT winds

were introduced.

Table 5.5.2. Statistical comparison of model deticarrents(cm $%) with currents derived

from RAMA buoys.

D

Location Standard Deviation RMSE Correlation

RAMA | NCEPEXP|QSCATEXP| NCEPEXP | QSCAEXR NCEEXP | QSCATEXH
0,80.5E U 40.15 55.77 58.70 68.87 37.53 0.72 0.82

\% 16.27 16.42 15.21 21.89 17.62 0.01 0.4

15N,805E| U 35.19 40.40 50.32 54.98 40.09 0.6} 0.84
\% 13.98 12.70 13.96 15.84 13.65 0.40 0.5(

15N,90E U 34.86 33.61 36.37 33.32 24.04 0.73 0.77%
\% 19.18 15.09 18.92 18.95 20.84 0.42 0.4(

15S,90E U 32.26 40.28 36.63 37.26 27.24 0.59 0.8(
\% 18.90 16.41 15.90 21.92 15.4( 0.25 0.44
15N,90E U 16.36 11.05 11.40 14.63 14.63 0.50 0.5%
\% 18.03 07.46 7.76 16.78 16.73 0.41 0.5G

12N,90E U 13.60 13.00 14.85 16.09 19.13 0.29 0.14
\% 16.55 07.84 11.55 17.15 15.78 0.16 0.44

8N,90E U 23.65 24.87 25.80 30.37 24.02 0.62 0.5(
\% 16.96 15.02 13.20 20.68 19.99 0.19 0.4(
8S,67E U 11.86 19.43 18.73 23.15 16.50 0.41 0.6%
\% 11.71 14.10 16.44 10.44 13.54 0.78 0.48

5S,95E U 15.37 27.00 23.98 21.25 18.81 0.63 0.6(
\% 11.54 18.98 12.99 20.39 15.25 0.19 0.12

12 S,67E u 06.28 05.72 3.70 07.80 4.50 0.30 0.73
v 09.93 06.60 8.90 10.96 8.90 0.16 0.55




Figure 5.5.11.a. Profiles of zonal curret@m s") from ADCP mooring, NCEPEXP and
QUIKEXP at Equator, 90 E. The right side of plotosts the statistical parameters such as
Mean (top) [QUIKEXP (green) NCEPEXP (red) and AD@®Rick)], RMSE (middle) between
model and observation [dashed line; QUIKEXP vs AD@reen), NCEPEXP vs ADCP
(red)] and standard deviation (middle) of model amloservation [thin line; QUIKEXP vs

ADCP (green), NCEPEXP vs ADCP (red)]and correlafmottom) between model and
observation [QUIKEXP vs ADCP (green), NCEPEXP v&CROred)].

Neither of the model simulations could capture ldrge intraseasonal variability in
the Bay of Bengal. However, the model could repoadthe seasonal variability seen in the
buoy observations (see Figure 5.5.10; 15°N, 90fEj)s worth mentioning here that, the
magnitude of the currents is relatively small (40 ') in the Bay as seen from Figure 5.5.9.

The relatively poor performance in the Bay may bsoaiated with the inability of the model



to resolve the small scale variability prevailimgthis region and also with the prescription of

an average annual freshwater influx which cannotlpce a realistic surface salinity.

Figure 5.5.11.b. Same as Figure 5.5.11.a, buEguator and 80.5 E.

Figure 5.5.12. Volume transport (svijncomparisons of NCEPEXP and QSCATEXP with
ADCP buoy locations at 90°E, and 80.5°E along eguat



Vertical profiles of the model currents are compawgth ADCP observations from
RAMA buoys at 90 E and 80.5 E on the equator. Feg8t5.11 shows the zonal current
profiles and their statistics for the model and thleservations. An eastward flowing
undercurrent is present in the equatorial regiorthef IO. This Equatorial Under Current
(EUC) is better developed during the winter monsooithe eastern side of the Ocean than on
the western sideKlnauss and Taftl964]. The presence of the EUC during the nortlegigst
and southwesterly monsoon is reportedR®ppin et al[1999] for the year 1994. A recent
study by Iskandar et al[2009], using the ADCP mooring at 0 S, 90 E repdrevidence for
the presence of the EUC between 90 m and 170 mglboth monsoon seasons. The strong
seasonality observed in the EUC Ishhkander et al[2009] at 0, 90 E is reproduced by the
model simulations up through 2007. However, dur2@98 and 2009, NCEPEXP fails to
capture the undercurrent, while QSCATEXP simuléitesEUC better. We speculate that the
absence of the EUC in the NCEPEXP is due to theneous NCEP surface winds as
discussed in the section 5.5.1. At 80.5 E as W@BCATEXP simulates the current pattern
better than NCEPEXP. A statistical analysis donetlo® two simulations revealed that
QSCATEXP currents are well correlated with obsaovet and have smaller errors than those
in NCEPEXP.

Volume transport estimates provide another way alidating the current profiles.
Volume transport estimates using equation 2 at Baahd 90 E on the equator using ADCP
current measurements are compared to the modelages (Figure 5.5.12). Volume transport
estimates in both model simulations are in goagéegent with observations.

Using an Ocean General Circulation Modeéngupta et a[2004] established that a
biweekly mode of meridional currents on the theatqu consists of packets of westward
propagating wind forced Mixed Rossby Gravity (MR@aves. They proposed that the
atmospheric Quasi Biweekly Mode resonantly forcesebkly MRG waves in the ocean and

so are responsible for the biweekly oscillationsestsed in the meridional currents in the



eastern equatorial region. The amplitude spectthemmeridional currents in both the model
simulations and the observations at 80.5°E and 86k the biweekly oscillations (Figure
5.5.13). At 80.5E, QSCATEXP simulates biweekly rasdat 12, 15 and 17 days in
agreement with the observations, NCEPEXP also sitesll the modes but with lesser
accuracy. Similarly, at 90°E, the biweekly osciias simulated by QSCATEXP are also

reasonably comparable with the observations but svgmaller amplitude.

Figure 5.5.13. The FFT amplitude (ci)sspectrum of meridional currents from NCEPEXP
(red), QSACTEXP (green) and ADCP profiles (blacki RAMA mooring at 90 E (top) and
80.5 E (bottom) along the equator shows the biweegtillations.



5.6 Mixed Layer Depth and Isothermal Layer Depth
5.6.1 Mean monthly evolution

The ability of the model to reproduce the climagié@l monthly evolution of the
MLD is evaluated using WOAQ09. The monthly evolutiohthe MLD in the two model runs
and in the WOAOQ9 climatology and the differencetMeen them are shown in Figure 5.6.1.
The spatial evolution of the observed MLD varidlils accurately reproduced by both model
runs. There is no notable difference in the MLDwestn these two model runs and the
difference between the models and the observaisoredatively small (model-WOAQ9; -5 to
15 m), except in some localized areas. The modakrgdly has a deeper mixed layer
compared to the observations. Large differenceswd®at the model and the observations are
seen at some localities such as the southeasteiafr Sea and the head-bay during the
months of January and February (Figure 5.6.1% Well known that during winter monsoon
season, the MLD in the southeastern Arabian Sparngrily controlled by a strong halocline
in the near surface layer caused by the advecfibomosaline water from the Bay of Bengal
by the EICC Rao and SivakumaB003]. Figure 5.3.2 shows the salinity differeetween
the model and WOAQ9. The region where there isrgelaifference in the MLD coincides
exactly with the region where the surface saliniifyerence is large. The surface salinity in
the model overestimates the observed value by thare 1 psu in the southeastern Arabian
Sea during January and February. The near-surfestefisation is not controlled by salinity
in the model. To investigate further, the subswafaalinity and temperature has also been
compared at two locations; one where the discrgparists (a box of 2°N-6°N; 72°E-76°E)
and another where there is no discrepancy (a b&qoator-4°N; 56°E-60°E). The results are
shown in Figure 5.6.2.a and 5.6.2.b. It is cleamfrFigure 5.3.2hat, during January and
February, in the south eastern Arabian Sea, thengthalocline, which is seen in the
observations, is not reproduced in the model. Hetlee near surface stratification is not

controlled by salinity in the model (Figure 5.6)2.&emperature also shows a small



difference with the observations (Figure 5.6.2Bhe weaker stratification in the model
salinity compared to that observed translates atweaker stratification in density and a
larger MLD. Elsewhere, in regions where the model abserved MLD do not differ, the
vertical structures of salinity and temperatureoatfo not differ. Except this kind of
discrepancy in some localized areas, the model dagsod job in reproducing the observed
MLD. The model grid has been prepared in such a thaythere is a wide opening for the
Palk Strait. This study suggests that, the saliaitg MLD errors in the eastern Arabian Sea
could be rectified by closing the Palk Strait iretmodel grid. In the Head Bay, the
overestimation of the model MLD begins in July ardches maximum in January-February.
This temporal evolution of the MLD difference (mbaddservation) coincides with that of the
salinity difference (Figure 5.3.2). This analysisoaimplies the importance of seasonal
variability in the river discharge supplied to thedel.

Figure 5.6.3 shows the standard deviation of theDMind the annual average of the
MLD for both the observations and the model rufidie model runs show similar spatial
patterns and magnitudes of the MLD. Although thedetooverestimates the standard
deviation, the model does well in reproducing thatisl patterns in the observations.

Figure 5.6.4 shows the bias (model-observatioh®),correlation between the model
and observations and the RMSE of the model comparetiservations. A bias of about 5 m
is typical throughout the entire 10 with the exgeptof some localized regions such as the
head-bay, the eastern equatorial 10 and the sastdr@alO. As has been shown, these are
regions where the salinity simulation is poor. Toerelation with observations is also poor in
these regions and in the eastern Arabian Sea &sHoslever, other regions show very good
correlations of greater than 0.8. The RMSE showpatial pattern, which coincides with the

bias, as expected.



Figure 5.6.1. The monthly evolution of multiyeaemage (2004-2009) of MLD (m) derived
from 2 model runs and WOAQ9 climatology and th&edihce in MLD obtained from model

and observation.



Figure 5.6.2. The difference between model andrghgen (WOAQ9) in the vertical profiles
of salinity (psu) (January (Top) and February awged) at a location where MLD (m)
discrepancy is there (left panel) and where MLDcdipancy is not there (right panel).
Difference between model and observation in theiocar profiles of temperature (°C)
(January and February averaged) (Bottom) at a lamatwhere MLD discrepancy is there

(left panel) and where MLD discrepancy is not th@ight panel).

Figure 5.6.3. The standard deviation (top panel)tie MLD (m) and the average MLD
(bottom panel) in the observation as well as in et@dns.



Figure 5.6.4. Bias (model-observation) (top panel)MLD (m), correlation between the
model MLD and observation (middle panel) and roeam square error in the model MLD

compared to observation (bottom panel).

5.6.2 Intra-seasonal and inter-annual variability n MLD
5.6.2.1 At selected regions (using 5-day model ouwitp using Argo gridded product

Figure 5.6.5 shows the time series of the MLD akRkcted regions in the 10 basin.
The mean, the standard deviation, the correlatetwden the model and the observations,
and the RMSE in the model with respect to the oladEms at each location are shown in
Table 5.6.1. These statistical parameters are graphrepresented using a Taylor diagram
(Figure 5.6.6). The plots along with these staigdtparameters clearly show that the model
does a reasonably good job in capturing intra-sedsas well as inter-annual variability in

the MLD. CBOB shows a notable disagreement betweenmodel and the observations



during the December-February period (the model Mé o deep) in all the years. This may
be due to the use of an average annual river-digehato the model instead of monthly
values. Both the model simulations show a similarfggmance as revealed in the Taylor
diagram. A very good correlation of more than @.®bserved in the ITF, SEC, SEYC, CAS
and SOM regions. The LAK and CBOB show correlatiasspoor as 0.3 and the WYRT
shows a value of 0.6. The poor correlations in Lakd CBOB might be associated with the

salinity problem discussed previously.

Figure 5.6.5. The time series of MLD (m) averageer @ selected regions (as indicated in
the legend) in the 10 basin.



Figure 5.6.6. Taylor diagram showing the MLD (m)rfpemance of two model-runs in
comparison with observation averaged over 8 seteodgions in the 10 (as indicated in the
legend).

Figure 5.6.7. The FFT amplitude spectrum of MLD &t3elected locations in the 10 basin.



Table 5.6.1. Statistical parameters for the comgami of MLD (m) derived from the model

with that derived from optimally interpolated Argadded data.

MEAN STD RMSE Correlation
Location | Argo NCEP | QSCAT | Argo NCEP | QSCAT | Argo Argo Argo Argo
EXP EXP EXP EXP & & & & QSCAT
NCEP | QSCAT | NCEP | EXP
EXP EXP EXP
WYRT | 34.27| 50.63| 51.87 11.08 16.21 15.61 20.81 21.70.61 0.61
ITF 39.76 | 52.80| 54.16 13.8/ 18.6 18.08 1551 16.50.92 0.91
LAK 28.08 | 38.34| 40.68 10.71 14.45 14.48 18.45 19.7160.30 0.34
SEC 4998 61.26 62.39 21.39 23.01 22.2)7 1503 14.98.92 0.92
SEYC 26.40| 32.56 35.44 10.05 13.1)f 13.2p 8.192 210.80.90 0.89
CBOB | 21.76| 42.08 4251 8.869 18.09 17.79 2749 @7.830.25 0.25
CAS 40.80| 48.89 50.06 19.76 24.74 2421 17.38 16.46.83 0.85
SOM 34.74| 47.30 46.89 11.84 19.08 17.76 15.87 15.56.92 0.91

Figure 5.6.7 shows the amplitude spectra of MLOhat 8 selected locations. It is
clearly seen from the figure that most of the irgemsonal and inter-annual variabilities have
been captured by the model. Generally, the vaiiedsilare captured very realistically by the
model. The 90-day periodicity has been capturedy weell at all the locations. The
disagreement at CBOB is also reflected in its spettespecially at longer periods. At LAK,
although the 120 day periodicity has been pickethyithe model runs, the amplitude is only

about half that of the observations.

5.6.2.1 At RAMA buoy locations (using daily model atput)

Figure 5.6.8 shows the time series of the MLDswetifrom all 14 available RAMA
buoys in the 10 along with those from the modelstufor these comparisons, we have used
the daily output from the model for the years 2@08 2009. Table 5.6.2 gives the statistical

parameters for the comparison of model and RAMA MLDn the northern 10 the



correlations average about 0.5, while in the South® the correlations are about 0.6. Along
the equator, in the central 10, the correlatiorss@Bb, while in the eastern 10, it drops to 0.24.
Figure 5.6.8, in conjunction with Table 5.6.2, slsawat the MLD has been replicated by the
model reasonably well. During January and Febreérdyoth the years, in the head-bay, the
model shows a deeper MLD compared to the obsenstibhis discrepancy decreases as it
goes towards equator. The reason for this discpamce again, is inadequacy of using an
annual average river outflow in the model and ittifar emphasizes the importance of
prescribing a seasonally varying climatology. Askitron of observed salinities would have
improved the salinity structure and hence MLD. 8A8, 55°E, where the Seychelles-Chagos
thermocline ridge exists, a temporally constant Mkbserved with an average value of 15
m from November 2008 to May 2009, after that itpk¥es very consistently in the RAMA
data as well as in the model. The same behavicturs@t a location 4°s further south, but
here the model and observed MLDs differ by neanty.5
Figure 5.6.9 shows the time series of the ILD \=tifrom all the available RAMA

buoys from the 10 along with the model derived ILDhe statistical parameters for this
comparison are shown in Table 5.6.3. It is veraccfeom the figure and table that the ILD is
reproduced by the model very realistically except2fS, 67°E (here, the correlation is only
0.21). Although the model does not capture the mieskevariability resulting in a very poor

correlation, the model and observed magnitudes@rgarable at this location.



Figure 5.6.8. Time series of MLD (m) derived frolhtlae available RAMA buoys from IO
along with model derived MLD.



Figure 5.6.8. (Continue) Time series of MLD (m)ided from all the available RAMA buoys
from 10 along with model derived MLD.



Figure 5.6.9. Time series of ILD (m) derived froththe available RAMA buoys from IO

along with model derived ILD.



Figure 5.6.9. (continue) Time series of ILD (m)ided from all the available RAMA buoys

from 10 along with model derived ILD.



Table 5.6.2. Statistical parameters for the comgami of MLD (m) derived from the model

with that derived from RAMA data.

Location MEAN STD RMSE Correlation

RAMA | NCEP | QUIK | RAMA | NCEP | QUIK RAMA RAMA RAMA | RAMA
EXP EXP EXP EXP & & & &

NCEP | QUIK | NCEP | QUIK

EXP EXP EXP EXP

1.5°§, 4521 | 6.26 | 37.3Y} 21.18 17.10 16.30 23.8 2291 0.30.45
?.g.:?\l,E 23,51 | 39.82| 39.26 1181 18.17 17.80 27.1 27.19 3 0.60.57
ig:ﬁ, 3256 | 34.49| 3597 14.17 16.09 15.83 14.2 14.43 5 0.60.67
gglblE 32.15 | 37.84| 39.04 1447 1596 16.56 14.0 15.00 6 0.50.53
i?5°EN, 41.75 | 41.55| 4049 1949 21.00 2097 238 21.67 6 0.30.42
SI;OQEo 54.89 | 37.20| 45.5Q0 19.73 17.47 21.19 28.8 23.43 6 0.30.49
EOQS : 35.77 | 38.62| 40.17 20.89 19.74 20.06 24.4 23.92 6 0.10.24
gg,E 22.26 | 22.22| 2441 16.47 1044 1277 11.8 11.65 0 0.Y0.74
1525°SE, 40.57 | 32.77| 33.65 24.21 20.81 20.39 159 16.12 3 0.80.84
451°5§E 23.65 | 19.63| 21.11 7.981 6.477 6.475 7.85 8.330 0.58.53
gz§,E 30.45 | 27.21| 28.63 16.35 1443 14.81 8.34 8.407 0.80.86
?Z:g, 49.89 | 35.14| 41.84 1460 13.83 12.27 185 18.44 1 0.7Y0.59
?.75°E§, 4521 | 36.26] 37.31 21.18 17.10 16.30 23.8 2291 7 0.30.45
2882"; 35.85 | 29.20| 29.08 11.18 13.02 10.97 1438 15.78 8 0.50.43

4°




Table 5.6.3. Statistical parameters for the comgamiof ILD (m) derived from the model with

that derived from RAMA data.

Location MEAN STD RMSE Correlation
RAMA NCEP QUIK RAMA NCEP | QUIK RAMA RAMA RAMA RAMA
EXP EXP EXP EXP & & & &
NCEP | QUIK NCEP | QUIK
EXP EXP EXP EXP
1.5°§ 57.93 61.21 | 59.67| 20.95 17.08 17.17 11.25 11.15 3 0.8 0.83
igZIS\IE 56.97 57.64 | 57.57| 19.29 17.94 16.46 9.376 8.58 0.860.87
22:5 63.92 63.71 | 65.64| 18.52 15.56 16.05 14.40 15.69 7 0.6] 0.61
gglill,E 72.68 77.01 | 76.74, 24.54 11.48 11.34 16.91 17.19 3 0.6] 0.61
2950"EN, 64.60 73.02 | 73.23| 16.36 11.80 12.42 12.08 10.61 7 0.5 0.69
SI;%,EO 66.26 68.98 | 76.47| 20.84 16.18 14.38 9.978 8.2% 0.800.87
2%0,5 = 74.46 7496 | 80.40| 26.96 1279 13.92 16.25 1391 1 0.7 0.73
29§I,E 22.11 29.92 | 31.12| 8.529 15.36 1550 7.26 8.3( 0.850.84
ig:; 35.84 47.99 | 48.35| 18.65 2535 2523 3.84 4.04 0.980.97
Z"S?I,E 34.68 37.94 | 39.43| 10.78 10.28 8.744 6.746b 6.37 0.7[70.75
g°7§E 36.02 38.24 | 38.51| 16.49 15.36 16.29 6.72]7 6.76 0.980.93
i;g 53.06 68.09 | 67.75| 23.22 7.45%6 7.182 12.56 12.6 0.2p0.21
275% 61.80 69.24 | 65.60| 19.05 15.22 13.83 16.11 14.2 0.480.57
?1985 : 40.37 51.74 | 44.83| 18.62 11.68 11.54 7.52P 7.62 0.720.72
80.5°E

6. Website for ocean analysis products

The main objective of the GODAS-MOM at INCOIS is poovide an accurate

estimate of the ocean state, which could be usedtialize a coupled model for the seasonal

monsoon prediction and also to understand the méitjeof the ocean at different time scales.




In this regard, the temperature, salinity, seaas@rheight and velocity structure of the global
ocean since January 2003, which were simulated ®pAS-MOM, when it is forced with
QuikSCAT and NCEP2 winds, are being made availadsleceanographic research and other
operational activities. Interested users can actiesse data sets through the Live Access
Server (LAS) using the link http://las.incois.govlas/getUl.do. The data sets are available
under the subdirectory “ocean analysis” in “chods¢éa set”. The LAS makes it relatively
easy to create basic graphics and to download subsé¢éhe data. We also offer OPeNDAP,
formerly known as DODS (Distributed OceanographatedDServer). At present, only monthly
and pentad data sets are available through ouriteebte datasets are available at present in
NetCDF, ASCII and arcGrid format. The data produatsdaily resolution will be made
available in the web shortly. The derived prodwsttsh as the ILD, the MLD, the depth of the
20°C isotherm and the steric height anomaly areenaagilable through LAS. The Figure
6.1.a and Figure 6.1.b shows a screen shot, whigts gan overview of the visualization

capabilities of GODAS-MOM at INCOIS.

Figure 6.1.a. INCOIS webpage from where MOM-GODAS8aa analysis product can be
downloaded.



Figure 6.1.b. Examples of GODAS-MOM LAS visualaratapabilities.

7. Summary and Conclusion

A new version of the GODAS, which is based on tfebG MOM4p0 and a 3SDVAR
data assimilation scheme, is configured at INC@iShis report, we present the validation of
the GODAS-MOM ocean state in the Tropical 10. Tvases are examined, forced with two
different wind products: the NCEP/NCAR reanalysismmentum fluxes and the QuikSCAT
scatterometer winds. The validation reveals thathoth experiments, the model simulates
most of the observed features of SST, D20, SSHAicat temperature structures, MLD, ILD
and currents with reasonably good accuracy in thepi€al 10 at both seasonal and
interannual time scales. The analysis further shtvassthere was a considerable improvement
in the ocean current field when the model was freéth the QuikSCAT winds. The
validation also suggests the need for further imgnoent to the GODAS-MOM. A brief list

of recommendations for the improvement of the masidescribed below.



1)

2)

3)

The analysis showed that forcing the model withaanual river discharge leads to
large errors in the salinity field in the Bay ofiBml. The wrong representation of the
salinity stratification in the head bay, cause®arpepresentation of the model mixed
layer, and it may eventually leads to an errohmmixed layer heat budget in the near
surface layer. The consequences are errors in 8lednd the MLD in the Bay of

Bengal, especially in the head bay. Hence it ismenended that a seasonally varying

freshwater river discharge be used instead of anaraverage.

Momin et al.[2010] studied the impact of satellite-derived gyoéation on the
variability of the sea surface salinity in the ticg 10 using an OGCM. Their analysis
suggests that the forcing with satellite precipotat (GPCP) captures the high-
frequency variability much better than that forded precipitation from the NCEP
reanalysis. They further suggested that the regibisgh-frequency variability in sea
surface salinity coincide with the regions of higbguency variability in the satellite
precipitation. Their study further emphasizes that low-frequency part of the sea
surface salinity variability is governed by adveetprocesses and that satellite derived
precipitation does not have a significant impact this scale of variability. The
GODAS-MOM is forced with NCEP2 precipitation andaperation. Forcing with
satellite derived precipitation instead of NWP modierived precipitation will likely

lead to an improvement in the model ocean salinity.

The widening of the Indo-Sri Lanka channel lead®iirs in the representation of
currents in the model, which, in turn, caused laggeors in the salinity filed,
particularly in the southeastern Arabian Sea. Adicgy to earlier studieRao and
Sivakumarf1999] andKurian and Vinayachandraf2007], this is the region where a
“mini” warm pool forms during the spring, which gk a significant role in the
progress of the monsoon and the formation of tle@soon onset vortexRpo and

Sivakumar, 1999; Shenoi et al999]. A poor representation of the salinity fiehd



4)

this region can disrupt the thermohaline structafemodel. One of the primary
objectives of this ocean analysis is to provideaocmitial conditions for the coupled
model, which will be used for monsoon forecastsesSEnforecasts are likely proven to
be sensitive to the ocean heat content in the Amalfea. Our analysis strongly
recommends the closing of the Indo-Sri Lanka chhforea better representation of

the thermohaline structure in the SEAS.

In the GODAS-MOM the top level (5 m) of the modeirperature is strongly relaxed
using daily Reynolds SSTReynolds et al.2007]. Figure 7.1 shows the statistical
analysis of SST derived from NCEPEXP (MSST) and rieéy SST (RSST) with
respect to TMIAMSRE (TSST). Figure shows that thare isolated cool, -0.3°C
(warm, 0.3°C) bias between the RSST and TSST péatlg in the thermocline ridge
region (Oman coast). The model shows relativelyanaoas with respect to TSST
particularly in these two locations. In additiolgetcorrelation between RSST and
TSST clearly reflects the pattern of correlatiotween MSST and TSSST. One
reason for a weaker correlation (although it i gteater than 0.6) between RSST and
TSST in the equatorial belt must be due to theelaanfall activity in the Eastern
Equatorial 10. The Figure 7.2 shows the averag@42#008) value of the OLR in the
Tropical Indian Ocean. It is interesting to notattrelatively large convective activity
in the Eastern Equatorial IO must create differenicethe SST retrievals between
RSST and TSST, since the former depends primanlA¥HRR (infrared band) and
latter depends on the microwave band. Microwaves “sae” through the clouds
while the infrared cannowWyentz et al.2000]. It is in the EEIO region that RSST and
TSST show a relatively large RMSD. This could be ocause of the poor correlations
between the model and the observations (left paméligure 7.1. We have to do more
analysis, such as compare RSST with TSST and RAIBA &nd gain more insight

into which is the better product, so that prodwent e used in the GODAS-MOM.



We have relaxed the model to the Reynolds SST tamaist have created differences
in the above mentioned areas (Eastern Equatorial@@an coast, thermocline ridge
region) with respect to TMIAMSRE SST). In short, sleould conduct an experiment

where we relax the model to TMIAMSRE SST.

Figure 7.1. Bias (°C) (top), Correlation (middlendaRMSE (°C) (bottom) between NCEPEXP
& TMIAMSRE and Reynolds SST & TMIAMSRE.

Figure 7.2. Outgoing longwave radiation (WP)raveraged during 2004-2008.

5) Papa et al.[2010] developed a technique to retrieve the ridischarge rate from
altimetry by regressing the altimetry derived riveater height on the observed river

discharge. For periods whem situ observations are not available (2003-2008), the



6)

7

8)

regression curves provide the means for estimatisgharge rates. Their comparison
of estimated river discharge rates with observeldlega shows a reasonably good
agreement. Studies shown large interannual vanstio river discharge from the
Ganga-Brahmaputra, emphasizing the importance otingp the model with
interannual river discharge rates instead of anauakasonal rates to achieve a better

simulation of the salinity field in the Bay of Beailg

The analysis suggests that a higher resolution hwoleld improve the simulation of

small scale eddy activity at higher latitudes aodsequently the current field.

In agreement with earlier studies, our analysiswshthat there are considerable
improvements in the current field, when the modefarced with QuikSCAT winds
instead of NCEP2 momentum fluxes. UnfortunatelyterafNovember 2009, the
QuikSCAT wind data were no longer available. A nevatterometer, the Advanced
SCATterometer (ASCAT) onboard the MetOp-A satellipFovides surface wind
speed and direction over the global ocean withatiapresolution of 25 km. A study
by Bentamy[2008] shows that the ASCAT winds are reasonakiljut at resolving
surface winds over the ocean surface (RMSE of nhad@iand direction is around 2
m s and 20° respectively). This data set is continlyoasailable from 17 October
2007 onwards. The GODAS-MOM forcing with ASCAT wlirshould improve the

ocean analysis, especially the surface currents.

It is well known that there are significant erramsthe NCEP2 heat flux, which will
contribute to errors in the model SSTuh et al.2009 Swain et al.2009; Mcphaden

et al, 2009]. Forcing the model with the recently devetbeat flux datarropFlux
[Praveen kumar et al2011] or OA flux [Yu,2007], which have better accuracy, may

provide better oceanic conditions.



9) A systematic effort could be made to reduce théesyatic bias in the model state by

modifying the background viscosity.

Figure 7.2. Strength of diurnal wind cycle, withjoraaxis plotted in color in locations where
it is statistically significant. Adapted from &let al [2005].

10) Figure 7.2 shows the amplitude of the diurnal witiiess fromGille et al. [2005].
The figure shows that statistically significant diurnaind variationsoccur along
coastlines all over the world, they are commonfemed to as the land/sea breeze. A
study byHunter et al.[2007] showed that such diurnal winds forced digant
motions in the coastal ocea@®pen ocean winds also undergo substantial diurnal
variability in tropics (between 30°S to 30°N). dtexpected that they would play a role
in mixed layer dynamicd.ee et al[2005] showed the effects of high-frequency wind
sampling in a near-global ocean model. They fotbedmodel first with a 12-hourly
averaged wind product and then, in a separate iexpet, with winds sub-sampled
from the same product at 24 hourly intervals. Tisaiidy showed that, in tropical and
coastal regions, the changes in upper ocean steuciue to the wind forcing was
primarily caused by the differences in advectiosuting from aliasing in the annual
mean wind, which varies according to the sub-samgpktrategy. These studies

indicate the importance of forcing the model witbirdal winds. At present, for high



frequency wind data, we have only the output of Niv&dels. However, the diurnal
signal in the NWP wind field will have to be studiearefully before employing them

in the ocean analysis.

11)The GODAS-MOM assimilates temperature and synthedimity profiles obtained
from in-situ observations. By assimilating sea @cef height anomalies as well, the

ocean analysis will greatly improve its represeatabf the ocean state.

12)At present, GODAS assimilates observed temperatmndesynthetic salinity based on
the local climatological temperature and salinityrrelation. The assimilation of

observed salinity will improve significantly theesn analysis.
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