Applicability and performance of Cell BE as a mobile GIS high performance platform

Jyothish Soman, Bharghava, K S Rajan
IIIT-Hyderabad

Joint Workshop of ISPRS WG IV/1, WG IV/3 and WG VIII/1
On Geospatial Data Cyber Infrastructure and Real-time Services with Special Emphasis on Disaster Management
November 25-27, 2009, INCOIS (Hyderabad)
Agenda

- Current computational landscape
- Maturing of HPC
- Mobility with high performance
- Introducing Cell Broadband Engine
- Cell BE for mobility
- Cell BE and GRASS
Current GIS mobility landscape

- Data collection on field
- Data Processing-Off field
- Framework
 - Mobile nodes
 - Communication infrastructure
 - Computational hubs
- Reliability and topological stability questionable

Centralized computing
Future of GIS and computing

- Future applications – resource and computation hungry
- Relevance of GIS expanding
- Community based computing challenges current paradigms
- Mobility gaining importance
- Computation amalgamating with mobility
GIS computation timeline

GIS
Computation
Increased computational requirements
Sequential speedups not sufficient
High performance computing
High performance computing

- Current scenario
 - Natural progression of current computing
 - Accepted by Computing community
 - Corresponding wide spread haste

- Practical issues
 - Non Trivial
 - Highly dependent on architecture
 - Research community trying to bridge the gap
GIS and High Performance computing

- Traditional computation model -> Centralized computing
- High performance computing -> Clusters
- Massive transition in HPC
 - Custom Hardware - GPU and Cell BE
 - Massive performance to cost ratio
 - Very good performance to power ratio
- Bottlenecks
 - Legacy software and practices
Parallel software

- Parallel software development non trivial
 - Hardware Architecture dependent
 - Architectures evolve
 - Software plays catch up
 - No standard parallel application development standard
 - OpenCL awaiting acceptance
Parallel software cont...

- Algorithms in sequential != parallel
- Parallel algorithms dependent on architecture
- Parallel algorithms don’t work well on all architectures
- Research required
Mobility for GIS

- Features of mobile GIS:
 - Creation
 - Access
 - Processing
 - Storage
 - Communication
- Requirement for processing increasing over time
- Bottlenecks
 - High Power consumption
 - Low battery life
Mobility for GIS....

- Practical features
 - Capabilities
 - Price
 - Size
 - Weight
 - Battery Life
Advantages of amalgamation of HPC and mobility

- Real time computation
- On-field analysis of data
- Reduction of response time
- Suitable for disaster prevention and management
 - Communication not a bottleneck
 - Efficient and fast response
 - Real time updates possible
- Can nurse expansion of role of GIS
CELL Broadband Engine

- General purpose computing platform
- Jointly developed by Sony, Toshiba and IBM
- Features for mobility
 - Capabilities - substantial
 - Price - low
 - Size - compact
 - Bigger than handhelds
 - Weight - light
 - Battery Life - low power design

- Computing hub of playstation
 - Also found in Blade servers and roadrunner supercomputer
General features of Cell BE

- 8 low power cores
- One PowerPC core
- High Memory bandwidth
- High computational throughput
- Architecture designed to scale beyond known bottlenecks
- Low power cores
Open Source and GIS

- GRASS GIS favoured open source distribution
- Well documented sequential code
- Large body of applications
- Stable performance across sequential platforms
- Starting point for our work
Few Parallelized GRASS applications

- **Mapcalc**
 - Fundamental set of application
 - Building block for multiple applications
 - Embarrassingly parallel application
 - Speedup of 5-6X over a sequential implementation

- **Terracost**
 - Speedup gained 6X over sequential.
Thank You

Jyothish Soman
jyothish@students.iiit.ac.in

Bharghava Rajaram
bharghava.rpg07@research.iiit.ac.in

K S Rajan
rajan@iiit.ac.in